高中数学教案范文模板下载
教案中的教学目标应该清晰明确,具体可行,并与学生的实际情况相结合。如何才能写出优秀的高中数学教案范文模板下载?这里给大家分享高中数学教案范文模板下载供大家参考。
高中数学教案范文模板下载篇1
教学内容
义务教育课程标准实验教科书(人教版)二年级上册第八单元第一课时
教学目标:
知识目标:
使学生通过观察、猜测、实验等活动,找出简单事物的排列数和组合数。
能力目标:
培养学生有顺序地、全面地思考问题的意识。
情感目标:
使学生感受到数学在现实生活中的应用价值,尝试用数学的方法来解决实际生活中的问题。
教学重点:
经历探索简单事物排列与组合规律的过程。教学难点:初步理解简单事物排列与组合的不同。教学环节
一、创设情境,导入新课
今天,我们来上一节数学活动课,大家乐意吗?(板书课题)现在大家来看一下我们的活动目标。(课件出示活动目标)
师:老师给大家带来了一个新朋友,课件出示圣诞老人画面,圣诞老人过生日了,想请大家参加他的生日聚会,但是他有要求。通过圣诞老人提出本节课任务。
二、合作学习,构建模型
(一)初步感知。课件出示:
第一关:摆一摆,猜密码。(用数字卡片
1、2能排成几个两位数自己动手摆一摆)让学生自己动手摆卡片后,指名汇报。
(二)合作探究。课件出示:
第二关:摆一摆,比一比(用数字卡片1、2、3能摆成几个不同的两位数)比比看,哪个组找的最多。
小组探讨,组长把大家的讨论结果记录在练习本上。(活动开始,教师巡视。)
以组为单位派代表汇报。
师:有的组摆出了4个不同的两位数,有的组摆出了6个不同的两位数,你们是怎么摆的?有什么好办法?
(鼓励方法的多样化,对各组的不同方法进行肯定和表扬。)结合发言,引导学生进行评价,选出优胜组。
师生共同归纳:用数字排列组成数,要按照一定的顺序确定十位上的数,然后考虑个位上有哪些数可以与其搭配。
(三)握一握。课件出示:小精灵说的话。
恭喜你们成功的度过了前两关,现在,我们握手祝贺一下。师:每两人握一次手,三人一共握几次手?(小组活动,教师巡视)活动后,小组指名汇报。
师:究竟是几次呢?请大家互相握握看吧!请一个组的同学上台演示,其他同学一起数数。
(四)课件出示:
师:圣诞老人决定奖励你们两件上衣、两条裤子,那么一共有几种搭配方法呢?(课件出示图片。)
学生拿出学具卡片,小组活动解决问题。汇报交流,说说自己为什么这样设计。
三、分层练习,巩固新知
(一)付钱问题。
课件出示:99页做一做2题
小组讨论,小组长统计本组学生答题情况,并由小组代表汇报。
(二)拍照站法。
小丽、小芳、小美在风景如画的郊外游玩,三人想站成一排拍照留念,她们有几种站法?
小组讨论后,由一组学生上台演示,其他学生数一数。
高中数学教案范文模板下载篇2
1.1.1任意角
教学目标
(一)知识与技能目标
理解任意角的概念(包括正角、负角、零角)与区间角的概念.
(二)过程与能力目标
会建立直角坐标系讨论任意角,能判断象限角,会书写终边相同角的集合;掌握区间角的集合的书写.
(三)情感与态度目标
1.提高学生的推理能力;
2.培养学生应用意识.教学重点
任意角概念的理解;区间角的集合的书写.教学难点
终边相同角的集合的表示;区间角的集合的书写.
教学过程
一、引入:
1.回顾角的定义
①角的第一种定义是有公共端点的两条射线组成的图形叫做角.
②角的第二种定义是角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所形成的图形.
二、新课:
1.角的有关概念:
①角的定义:
角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所形成的图形.
②角的名称:
③角的分类:A
正角:按逆时针方向旋转形成的角零角:射线没有任何旋转形成的角
负角:按顺时针方向旋转形成的角
④注意:
⑴在不引起混淆的情况下,“角α”或“∠α”可以简化成“α”;
⑵零角的终边与始边重合,如果α是零角α=0°;
⑶角的概念经过推广后,已包括正角、负角和零角.
⑤练习:请说出角α、β、γ各是多少度?
2.象限角的概念:
①定义:若将角顶点与原点重合,角的始边与x轴的非负半轴重合,那么角的终边(端点除外)在第几象限,我们就说这个角是第几象限角.
例1.在直角坐标系中,作出下列各角,并指出它们是第几象限的角.
⑴60°;⑵120°;⑶240°;⑷300°;⑸420°;⑹480°;
答:分别为1、2、3、4、1、2象限角.
3.探究:教材P3面
终边相同的角的表示:
所有与角α终边相同的角,连同α在内,可构成一个集合S={ββ=α+
k·360°,
k∈Z},即任一与角α终边相同的角,都可以表示成角α与整个周角的和.注意:⑴k∈Z
⑵α是任一角;
⑶终边相同的角不一定相等,但相等的角终边一定相同.终边相同的角有无限个,它们相差
360°的整数倍;
⑷角α+k·720°与角α终边相同,但不能表示与角α终边相同的所有角.
例2.在0°到360°范围内,找出与下列各角终边相等的角,并判断它们是第几象限角.
⑴-120°;
⑵640°;
⑶-950°12’.
答:⑴240°,第三象限角;
⑵280°,第四象限角;
⑶129°48’,第二象限角;
例4.写出终边在y轴上的角的集合(用0°到360°的角表示).解:{αα=90°+n·180°,n∈Z}.
例5.写出终边在y?x上的角的集合S,并把S中适合不等式-360°≤β<720°的元素β写出来.
4.课堂小结
①角的定义;
②角的分类:
正角:按逆时针方向旋转形成的角零角:射线没有任何旋转形成的角
负角:按顺时针方向旋转形成的角
③象限角;
④终边相同的角的表示法.
5.课后作业:
①阅读教材P2-P5;
②教材P5练习第1-5题;
③教材P.9习题1.1第1、2、3题思考题:已知α角是第三象限角,则2α,
解:??角属于第三象限,
?k·360°+180°<α<k·360°+270°(k∈Z)
因此,2k·360°+360°<2α<2k·360°+540°(k∈Z)即(2k+1)360°<2α<(2k+1)360°+180°(k∈Z)
故2α是第一、二象限或终边在y轴的非负半轴上的角.又k·180°+90°<
各是第几象限角?
<k·180°+135°(k∈Z).
<n·360°+135°(n∈Z),
当k为偶数时,令k=2n(n∈Z),则n·360°+90°<此时,
属于第二象限角
<n·360°+315°(n∈Z),
当k为奇数时,令k=2n+1(n∈Z),则n·360°+270°<此时,
属于第四象限角
因此
属于第二或第四象限角.
1.1.2弧度制
(一)
教学目标
(二)知识与技能目标
理解弧度的意义;了解角的集合与实数集R之间的可建立起一一对应的关系;熟记特殊角的弧度数.
(三)过程与能力目标
能正确地进行弧度与角度之间的换算,能推导弧度制下的弧长公式及扇形的面积公式,并能运用公式解决一些实际问题
(四)情感与态度目标
通过新的度量角的单位制(弧度制)的引进,培养学生求异创新的精神;通过对弧度制与角度制下弧长公式、扇形面积公式的对比,让学生感受弧长及扇形面积公式在弧度制下的简洁美.教学重点
弧度的概念.弧长公式及扇形的面积公式的推导与证明.教学难点
“角度制”与“弧度制”的区别与联系.
教学过程
一、复习角度制:
初中所学的角度制是怎样规定角的度量的?规定把周角的作为1度的角,用度做单位来度量角的制度叫做角度制.
二、新课:
1.引入:
由角度制的定义我们知道,角度是用来度量角的`,角度制的度量是60进制的,运用起来不太方便.在数学和其他许多科学研究中还要经常用到另一种度量角的制度—弧度制,它是如何定义呢?
2.定义
我们规定,长度等于半径的弧所对的圆心角叫做1弧度的角;用弧度来度量角的单位制叫做弧度制.在弧度制下,1弧度记做1rad.在实际运算中,常常将rad单位省略.
3.思考:
(1)一定大小的圆心角?所对应的弧长与半径的比值是否是确定的?与圆的半径大小有关吗?
(2)引导学生完成P6的探究并归纳:弧度制的性质:
①半圆所对的圆心角为
②整圆所对的圆心角为
③正角的弧度数是一个正数.
④负角的弧度数是一个负数.
⑤零角的弧度数是零.
⑥角α的弧度数的绝对值α=.
4.角度与弧度之间的转换:
①将角度化为弧度:
②将弧度化为角度:
5.常规写法:
①用弧度数表示角时,常常把弧度数写成多少π的形式,不必写成小数.
②弧度与角度不能混用.
弧长等于弧所对应的圆心角(的弧度数)的绝对值与半径的积.
例1.把67°30’化成弧度.
例2.把?rad化成度.
例3.计算:
(1)sin4
(2)tan1.5.
8.课后作业:
①阅读教材P6–P8;
②教材P9练习第1、2、3、6题;
③教材P10面7、8题及B2、3题.
高中数学教案范文模板下载篇3
【教学目标】
1、知识与技能:
(1)掌握圆的标准方程。
(2)会由圆的标准方程写出圆的半径和圆心坐标,能根据条件写出圆的标准方程。
(3)会判断点与圆的位置关系。
2、过程与方法:
(1)进一步培养学生用代数方法研究几何问题的能力。
(2)加深对数形结合思想的理解和加强待定系数法的运用。
3、情感、态度与价值观:
(1)培养学生主动探究知识、合作交流的意识。
(2)让学生感受数学,体验数学;从走入数学到走出数学,生活处处有数学,数学就在我身边,体会到数学知识、思想方法和精神来源于生活,还要服务于生活;寓思想教育于教学。让学生体会到数学的美以及数学的价值与魅力。
【学情分析】
对圆的方程有个初步的认识以及在上章学习了直线与方程的基础上,学习圆的方程,学生还是可以接受。在教学过程中,主要采用启发性原则,并且与已经学过的直线方程进行类比,发挥学生的思维能力、想象能力,由易到难,逐步加深。
【重点难点】
重点:圆的标准方程和圆的标准方程特点的明确。
难点:会根据不同的条件写出圆的标准方程。
【教学过程】
第一学时评论(0)教学目标
教学活动活动1【导入】新闻联播片段
请结合数学中圆知识,谈谈你对这句话的理解?
活动2【讲授】问题1.
在直角坐标系中,以A(a,b)为圆心,r为半径的圆上的动点M(x,y)满足怎样的关系式?
活动3【活动】想一想!
圆心在坐标原点,半径长为r的圆的方程是什么?
活动4【导入】试试你的眼力!判断下列方程是否为圆的标准方程:
(x-2)2+y=8;
(x-2)2-y2=8;
(2x-2)2+y2=8;
(x-2)2+y2=0;
(x-2)2+y2=a;
(2x-2)2+(2y-4)2=8。
答案:都不是,第6个可以化为圆的标准方程。
活动5【活动】再试一下!
圆(x1)2+(ay2)2=1a的圆心坐标和半径分别是什么?
答案:圆心坐标为(1,—2),半径是√2
活动6【活动】问题2.
要写出圆的标准方程,只需知道圆的哪些量?
怎样判断一点是否在一个圆上?
学生回答,教师点评.
活动7【活动】例1
写出圆心为A(2,-3),半径长为5的圆的方程,并判断点M1(5,7),M2((√5,1)是否在这个圆上。
学生回答,教师点评后,学生阅读教科书上本题解法.
活动8【活动】探究
你能判断点M2在圆内还是在圆外吗?
学生回答,教师点评。
点与圆心距离比半径大等价于点在圆外。
点与圆心距离比半径小等价于点在圆内。
点与圆心距离等于半径等价于点在圆外等价于点的坐标满足方程。
活动9【讲授】解题收获
1.从确定圆的两个要素即圆心和半径入手,直接写出圆的标准方程——直接法。
2.类似于点与直线方程的关系:点在圆上等价于点坐标满足圆方程活动10【活动】试一试!
例2△ABC的三个顶点的坐标分别是A(5,1),B(7,-3),C(2,-8),求它的外接圆的方程.
师:△ABC的外接圆的圆心简称什么?
学生回答
师:△ABC的外心是什么的交点?
学生回答
师:求圆的标准方程,只需知道圆心坐标和圆的半径。这三点都在圆上,其坐标一定是满足所求圆的方程。这样就可以设出圆的标准方程。
学生阅读教材例2解法。
师:提示:方程组中
(1)(2)得到什么?
(1)(3)得到什么?
然后,怎样就可以求出圆心坐标和半径。
活动11【讲授】解题收获
先设出圆的标准方程,再根据已知条件建立方程组,从而求出圆心坐标和半径的方法——待定系数法。
活动12【活动】动手折一折
请同学们准备一个锐角三角形纸片,能否用手工的方法找到此三角形外接圆的圆心?
学生回答过程.
把三角形的任意两个顶点重合进行对折,就可以得到边的垂直平分线,垂直平分线的交点即是三角形的外心。
师:把圆的弦对折,折线一定经过圆心。即圆心一定在弦的垂直平分线上。
活动13【活动】Let’stry
例3已知圆心为C的圆经过点A(1,1)和B(2,-2),且圆心C在直线m:x-y+1=0上,求圆心为C的圆的标准方程。
由学生阅读例3,学生总结解题步骤。
活动14【讲授】解题收获
由圆的几何性质直接求出圆心坐标和半径,然后写出标准方程——几何性质法。
活动15【活动】小结
一个方程
三种方法
一种思想
活动16【讲授】作业布置
作业:教材P124习题A组第2题和第3题.
课下探究:
(1)平面内到一定点的距离等于定长的点轨迹是圆。点的轨迹是圆的方法很多,请试着找出来,并和其他同学交流。
(2)直线方程有五种形式,圆除了标准方程,还有其它形式吗?
活动17【导入】结束语
圆心半径确定圆,
待定系数很普遍;
大家站在同一圆,
彰和谐平等友善;
半径就像无形线,
把大家心聚一点;
垂直平分折中线,
就能折出同心愿;
中国腾飞之梦圆。
活动18【测试】课堂测试
1.圆C:(x2)2+(y+1)2=3的圆心坐标为()
A(2,1)B(2,—1)C(—2,1)D(—2,—1)
2.以原点为圆心,2为半径的圆的标准方程是()
Ax2+y2=2Bx2+y2=4
C(x2)2+(y2)2=8Dx2+y2=√2
3圆心为(1,1)且与直线x+y=4相切的圆的方程是()
A(x1)2+(y1)2=2B(x1)2+(y1)2=4
C(x+1)2+(y+1)2=2D(x+1)2+(y+1)2=4
4圆A:(ax+2)2+y2=a+3,则此圆的半径为______________。
5已知一个圆的圆心在点C(—3,—4),且经过原点。
(1)求该圆的标准方程;
(2)判断点M(—1,0),N(1,—1),P(3,—4)和圆的位置关系。
6.已知△AOB的顶点坐标分别是A(8,0),B(0,6),O(0,0),求△AOB外接圆的方程.
7求过点A(1,—1)B(—1,1)且圆心在直线x+y2=0上的圆方程
参考答案:1B2B3A42或√2
5(1)(x+3)2+(y+4)2=25
(2)M在圆内,N在圆上,P在圆外。
6(x4)2+(y3)2=25。
7(x1)2+(y1)2=4
高中数学教案范文模板下载篇4
【一】教学背景分析
1。教材结构分析
《圆的方程》安排在高中数学第二册(上)第七章第六节。圆作为常见的简单几何图形,在实际生活和生产实践中有着广泛的应用。圆的方程属于解析几何学的基础知识,是研究二次曲线的开始,对后续直线与圆的位置关系、圆锥曲线等内容的学习,无论在知识上还是方法上都有着积极的意义,所以本节内容在整个解析几何中起着承前启后的作用。
2。学情分析
圆的方程是学生在初中学习了圆的概念和基本性质后,又掌握了求曲线方程的一般方法的基础上进行研究的。但由于学生学习解析几何的时间还不长、学习程度较浅,且对坐标法的运用还不够熟练,在学习过程中难免会出现困难。另外学生在探究问题的能力,合作交流的意识等方面有待加强。
根据上述教材结构与内容分析,考虑到学生已有的认知结构和心理特征,我制定如下教学目标:
3。教学目标
(1)知识目标:①掌握圆的标准方程;
②会由圆的标准方程写出圆的半径和圆心坐标,能根据条件写出圆的标准方程;
③利用圆的标准方程解决简单的实际问题。
(2)能力目标:①进一步培养学生用代数方法研究几何问题的能力;
②加深对数形结合思想的理解和加强对待定系数法的运用;
③增强学生用数学的意识。
(3)情感目标:①培养学生主动探究知识、合作交流的意识;
②在体验数学美的过程中激发学生的学习兴趣。
根据以上对教材、教学目标及学情的分析,我确定如下的教学重点和难点:
4。教学重点与难点
(1)重点:圆的标准方程的求法及其应用。
(2)难点:①会根据不同的已知条件求圆的`标准方程;
②选择恰当的坐标系解决与圆有关的实际问题。
为使学生能达到本节设定的教学目标,我再从教法和学法上进行分析:
好学教育:
【二】教法学法分析
1。教法分析为了充分调动学生学习的积极性,本节课采用“启发式”问题教学法,用环环相扣的问题将探究活动层层深入,使教师总是站在学生思维的最近发展区上。另外我恰当的利用多媒体课件进行辅助教学,借助信息技术创设实际问题的情境既能激发学生的学习兴趣,又直观的引导了学生建模的过程。
2。学法分析通过推导圆的标准方程,加深对用坐标法求轨迹方程的理解。通过求圆的标准方程,理解必须具备三个独立的条件才可以确定一个圆。通过应用圆的标准方程,熟悉用待定系数法求的过程。下面我就对具体的教学过程和设计加以说明:
【三】教学过程与设计
整个教学过程是由七个问题组成的问题链驱动的,共分为五个环节:
创设情境启迪思维深入探究获得新知应用举例巩固提高
反馈训练形成方法小结反思拓展引申
下面我从纵横两方面叙述我的教学程序与设计意图。
首先:纵向叙述教学过程
(一)创设情境——启迪思维
问题一已知隧道的截面是半径为4m的半圆,车辆只能在道路中心线一侧行驶,一辆宽为2。7m,高为3m的货车能不能驶入这个隧道?
通过对这个实际问题的探究,把学生的思维由用勾股定理求线段CD的长度转移为用曲线的方程来解决。一方面帮助学生回顾了旧知——求轨迹方程的一般方法,另一方面,在得到汽车不能通过的结论的同时学生自己推导出了圆心在原点,半径为4的圆的标准方程,从而很自然的进入了本课的主题。用实际问题创设问题情境,让学生感受到问题来源于实际,应用于实际,激发了学生的学习兴趣和学习欲望。这样获取的知识,不但易于保持,而且易于迁移。
通过对问题一的探究,抓住了学生的注意力,把学生的思维引到用坐标法研究圆的方程上来,此时再把问题深入,进入第二环节。
(二)深入探究——获得新知
问题二1。根据问题一的探究能不能得到圆心在原点,半径为的圆的方程?
2。如果圆心在,半径为时又如何呢?
好学教育:
这一环节我首先让学生对问题一进行归纳,得到圆心在原点,半径为4的圆的标准方程后,引导学生归纳出圆心在原点,半径为r的圆的标准方程。然后再让学生对圆心不在原点的情况进行探究。我预设了三种方法等待着学生的探究结果,分别是:坐标法、图形变换法、向量平移法。
得到圆的标准方程后,我设计了由浅入深的三个应用平台,进入第三环节。
(三)应用举例——巩固提高
I。直接应用内化新知
问题三1。写出下列各圆的标准方程:
(1)圆心在原点,半径为3;
(2)经过点,圆心在点。
2。写出圆的圆心坐标和半径。
我设计了两个小问题,第一题是直接或间接的给出圆心坐标和半径求圆的标准方程,第二题是给出圆的标准方程求圆心坐标和半径,这两题比较简单,可以安排学生口答完成,目的是先让学生熟练掌握圆心坐标、半径与圆的标准方程之间的关系,为后面探究圆的切线问题作准备。
II。灵活应用提升能力
问题四1。求以点为圆心,并且和直线相切的圆的方程。
2。求过点,圆心在直线上且与轴相切的圆的方程。
3。已知圆的方程为,求过圆上一点的切线方程。
你能归纳出具有一般性的结论吗?
已知圆的方程是,经过圆上一点的切线的方程是什么?
我设计了三个小问题,第一个小题有了刚刚解决问题三的基础,学生会很快求出半径,根据圆心坐标写出圆的标准方程。第二个小题有些困难,需要引导学生应用待定系数法确定圆心坐标和半径再求解,从而理解必须具备三个独立的条件才可以确定一个圆。第三个小题解决方法较多,我预设了四种方法再一次为学生的发散思维创设了空间。最后我让学生由第三小题的结论进行归纳、猜想,在论证经过圆上一点圆的切线方程的过程中,又一次模拟了真理发现的过程,使探究气氛达到高潮。
III。实际应用回归自然
问题五如图是某圆拱桥的一孔圆拱的示意图,该圆拱跨度AB=20m,拱高OP=4m,在建造时每隔4m需用一个支柱支撑,求支柱的长度(精确到0。01m)。
好学教育:
我选用了教材的例3,它是待定系数法求出圆的三个参数的又一次应用,同时也与引例相呼应,使学生形成解决实际问题的一般方法,培养了学生建模的习惯和用数学的意识。
(四)反馈训练——形成方法
问题六1。求过原点和点,且圆心在直线上的圆的标准方程。
2。求圆过点的切线方程。
3。求圆过点的切线方程。
接下来是第四环节——反馈训练。这一环节中,我设计三个小题作为巩固性训练,给学生一块“用武”之地,让每一位同学体验学习数学的乐趣,成功的喜悦,找到自信,增强学习数学的愿望与信心。另外第3题是我特意安排的一道求过圆外一点的圆的切线方程,由于学生刚刚归纳了过圆上一点圆的切线方程,因此很容易产生思维的负迁移,另外这道题目有两解,学生容易漏掉斜率不存在的情况,这时引导学生用数形结合的思想,结合初中已有的圆的知识进行判断,这样的设计对培养学生思维的严谨性具有良好的效果。
(五)小结反思——拓展引申
1。课堂小结
把圆的标准方程与过圆上一点圆的切线方程加以小结,提炼数形结合的思想和待定系数的方法①圆心为,半径为r的圆的标准方程为:
圆心在原点时,半径为r的圆的标准方程为:。
②已知圆的方程是,经过圆上一点的切线的方程是:。
2。分层作业
(A)巩固型作业:教材P81—82:(习题7。6)1,2,4。(B)思维拓展型作业:试推导过圆上一点的切线方程。
3。激发新疑
问题七1。把圆的标准方程展开后是什么形式?
2。方程表示什么图形?
在本课的结尾设计这两个问题,作为对这节课内容的巩固与延伸,让学生体会知识的起点与终点都蕴涵着问题,旧的问题解决了,新的问题又产生了。在知识的拓展中再次掀起学生探究的热情。另外它为下节课研究圆的一般方程作了重要的准备。
以上是我纵向的教学过程及简单的设计意图,接下来,我从三个方面横向的进一步阐述我的教学设计:横向阐述教学设计
(一)突出重点抓住关键突破难点
好学教育:
求圆的标准方程既是本节课的教学重点也是难点,为此我布设了由浅入深的学习环境,先让学生熟悉圆心、半径与圆的标准方程之间的关系,逐步理解三个参数的重要性,自然形成待定系数法的解题思路,在突出重点的同时突破了难点。
第二个教学难点就是解决实际应用问题,这是学生固有的难题,主要是因为应用问题的题目冗长,学生很难根据问题情境构建数学模型,缺乏解决实际问题的信心,为此我首先用一道题目简洁、贴近生活的实例进行引入,激发学生的求知欲,同时我借助多媒体课件的演示,引导学生真正走入问题的情境之中,并从中抽象出数学模型,从而消除畏难情绪,增强了信心。最后再形成应用圆的标准方程解决实际问题的一般模式,并尝试应用该模式分析和解决第二个应用问题——问题五。这样的设计,使学生在解决问题的同时,形成了方法,难点自然突破。
(二)学生主体教师主导探究主线
本节课的设计用问题做链,环环相扣,使学生的探究活动贯穿始终。从圆的标准方程的推导到应用都是在问题的指引、我的指导下,由学生探究完成的。另外,我重点设计了两次思维发散点,分别是问题二和问题四的第三问,要求学生分组讨论,合作交流,为学生设立充分的探究空间,学生在交流成果的过程中,既体验了科学研究和真理发现的复杂与艰辛,又在我的适度引导、侧面帮助、不断肯定下顺利完成了探究活动并走向成功,在一个个问题的驱动下,高效的完成本节的学习任务。
(三)培养思维提升能力激励创新
为了培养学生的理性思维,我分别在问题一和问题四中,设计了两次由特殊到一般的学习思路,培养学生的归纳概括能力。在问题的设计中,我利用一题多解的探究,纵向挖掘知识深度,横向加强知识间的联系,培养了学生的创新精神,并且使学生的有效思维量加大,随时对所学知识和方法产生有意注意,使能力与知识的形成相伴而行。
以上是我对这节课的教学预设,具体的教学过程还要根据学生在课堂中的具体情况适当调整,向生成性课堂进行转变。最后我以赫尔巴特的一句名言结束我的说课,发挥我们的创造性,力争“使教育过程成为一种艺术的事业”。
高中数学教案范文模板下载篇5
【学习导航】
(一)两角和与差公式
(二)倍角公式
2cos2α=1+cos2α 2sin2α=1-cos2α
注意:倍角公式揭示了具有倍数关系的两个角的三角函数的运算规律,可实现函数式的降幂的变化。
注: (1)两角和与差的三角函数公式能够解答的三类基本题型:求值题,化简题,证明题。
(2)对公式会“正用”,“逆用”,“变形使用”;
(3)掌握“角的演变”规律,
(4)将公式和其它知识衔接起来使用。
重点难点
重点:几组三角恒等式的应用
难点:灵活应用和、差、倍角等公式进行三角式化简、求值、证明恒等式
【精典范例】
例1 已知
求证:
例2 已知 求 的取值范围
分析 难以直接用 的式子来表达,因此设 ,并找出 应满足的等式,从而求出 的取值范围.
例3 求函数 的值域.
例4 已知且 、 、 均为钝角,求角 的值.
分析 仅由 ,不能确定角 的值,还必须找出角 的范围,才能判断 的值. 由单位圆中的余弦线可以看出,若 使 的角为 或 若 则 或
【选修延伸】
例5 已知
求 的值.
例6 已知 ,
求 的值.
例7 已知
求 的值.
例8 求值:(1) (2)
【追踪训练】
1. 等于 ( )
A. B. C. D.
2.已知 ,且,则 的值等于 ( )
A. B. C. D.
3.求值: = .
4.求证:(1)
高中数学教案范文模板下载篇6
授课时间:08年9月12日
授课年级、科目、课题:高一数学集合的概念
使用教材:必修1(人教版)
说课教师:刘华
各位老师同学们,大家好!今天我说课的课题是“集合的概念”,本节内容选自高中数学必修1(人教版),下面我将主要从六个方面介绍我的教学方案。
一、教材分析:
教材的地位和作用:
集合是学习高中数学的重要工具之一,起着承前启后的作用。本小节首先从初中代数与几何涉及的集合实例人手,引出集合与集合的元素的概念,并且结合实例对集合的概念作了说明.然后,介绍了集合的常用表示方法,包括列举法、描述法等,还给出了画图表示集合的例子.从教材我归纳出本节内容的教学重点和难点。
(一)教学重点:集合的基本概念和表示方法,集合元素的特征
(二)教学难点:运用集合的三种常用表示方法、列举法与描述法,正确表示一些简单的集合
二、教学目标:
(一)知识目标:
(1)使学生初步理解集合的概念,知道常用数集的概念及其记法;
(2)使学生初步了解“属于”关系的意义;
(3)使学生初步了解有限集、无限集、空集的意义
(二)能力目标:
(1)重视基础知识的教学、基本技能的训练和能力的培养;
(2)启发学生能够发现问题和提出问题,善于独立思考,学会分析问题和创造地解决问题;
(3)通过教师指导,发现知识结论,培养学生抽象概括能力和逻辑思维能力;
(三)德育目标:激发学生学习数学的兴趣和积极性,陶冶学生的情
操,培养学生坚忍不拔的意志,实事求是的科学学习态度和勇于创新的精神。
三、学情分析:
针对现在的学生知识迁移能力差、计算能力差的特点,第一节课的内容不要求学生太多的计算,通过大量的举例让学生充分掌握集合的基础知识。
四、教法分析:
为了突出重点、突破难点,本节课主要采用观察、分析、类比、归纳的方法让学生参与学习,将学生置于主体位置,发挥学生的主观能动性,将知识的形成过程转化为学生亲自探索类比的过程,使学生获得发现的成就感。在这个过程中力求把握好以下几点:
(1)通过实例,让学生去发现规律。让学生在问题情景中,经历知识的形成和发展,力求使学生学会用类比的思想去看待问题。
(2)营造民主的教学氛围,使学生参与教学全过程。
(3)力求反馈的全面性、及时性,通过精心设计的提问,让学生的思维动起来,针对学生回答的问题,老师进行适当的点评。
(4)给学生思考的时间和空间,不急于把结果抛给学生,让学生自己去观察,分析,类比得出结果,提高学生的推理能力。
五、教学过程
(一)复习导入
(1)简介数集的发展,复习最大公约数和最小公倍数,质数与和数;
(2)教材中的章头引言;
(3)教材中例子(P4)。
(二)讲解新课
(1)集合的有关概念
(2)常用集合及表示方法
(3)元素对于集合的隶属关系
(4)集合中元素的特性
(三)课堂练习
1下列各组对象能确定一个集合吗?
(1)所有很大的实数的集合(不确定)
(2)好心的人的集合(不确定)
(3){1,2,2,3,4,5}(有重复)
(4)所有直角三角形的集合(是的)
(5)高一(12)班全体同学的集合(是的)
(6)参加20--年奥运会的中国代表团成员的集合(是的)
2、教材P5练习1、2
六:总结
1.本节主要学习了集合的基本概念、表示符号;一些常用数集及其记法;集合的元素与集合之间的关系;以及集合元素具有的特征.
2.我们在进一步复习巩固集合有关概念的基础上,又学习了集合的表示方法和有限集、无限集、空集的概念,同学们要熟练掌握.
高中数学教案范文模板下载篇7
课题:
等比数列的概念
教学目标
1、通过教学使学生理解等比数列的概念,推导并掌握通项公式、
2、使学生进一步体会类比、归纳的思想,培养学生的观察、概括能力、
3、培养学生勤于思考,实事求是的精神,及严谨的科学态度、
教学重点,难点
重点、难点是等比数列的定义的归纳及通项公式的推导、
教学用具
投影仪,多媒体软件,电脑、
教学方法
讨论、谈话法、
教学过程
一、提出问题
给出以下几组数列,将它们分类,说出分类标准、(幻灯片)
①—2,1,4,7,10,13,16,19,…
②8,16,32,64,128,256,…
③1,1,1,1,1,1,1,…
④243,81,27,9,3,1,,,…
⑤31,29,27,25,23,21,19,…
⑥1,—1,1,—1,1,—1,1,—1,…
⑦1,—10,100,—1000,10000,—100000,…
⑧0,0,0,0,0,0,0,…
由学生发表意见(可能按项与项之间的关系分为递增数列、递减数列、常数数列、摆动数列,也可能分为等差、等比两类),统一一种分法,其中②③④⑥⑦为有共同性质的一类数列(学生看不出③的情况也无妨,得出定义后再考察③是否为等比数列)、
二、讲解新课
请学生说出数列②③④⑥⑦的共同特性,教师指出实际生活中也有许多类似的例子,如变形虫分裂问题、假设每经过一个单位时间每个变形虫都分裂为两个变形虫,再假设开始有一个变形虫,经过一个单位时间它分裂为两个变形虫,经过两个单位时间就有了四个变形虫,…,一直进行下去,记录下每个单位时间的变形虫个数得到了一列数
这个数列也具有前面的几个数列的共同特性,这是我们将要研究的另一类数列——等比数列、(这里播放变形虫分裂的多媒体软件的第一步)
等比数列(板书)
1、等比数列的定义(板书)
根据等比数列与等差数列的名字的区别与联系,尝试给等比数列下定义、学生一般回答可能不够完美,多数情况下,有了等差数列的基础是可以由学生概括出来的教师写出等比数列的定义,标注出重点词语、
请学生指出等比数列②③④⑥⑦各自的公比,并思考有无数列既是等差数列又是等比数列、学生通过观察可以发现③是这样的数列,教师再追问,还有没有其他的例子,让学生再举两例、而后请学生概括这类数列的一般形式,学生可能说形如的数列都满足既是等差又是等比数列,让学生讨论后得出结论:当时,数列既是等差又是等比数列,当时,它只是等差数列,而不是等比数列、教师追问理由,引出对等比数列的认识:
2、对定义的认识(板书)
(1)等比数列的首项不为0;
(2)等比数列的每一项都不为0,即
问题:一个数列各项均不为0是这个数列为等比数列的什么条件?
(3)公比不为0、
用数学式子表示等比数列的定义、
是等比数列
①、在这个式子的写法上可能会有一些争议,如写成
,可让学生研究行不行,好不好;接下来再问,能否改写为
是等比数列?为什么不能?式子给出了数列第项与第
项的数量关系,但能否确定一个等比数列?(不能)确定一个等比数列需要几个条件?当给定了首项及公比后,如何求任意一项的值?所以要研究通项公式、
3、等比数列的通项公式(板书)
问题:用和表示第项
①不完全归纳法
②叠乘法,…,,这个式子相乘得,所以(板书)
(1)等比数列的通项公式得出通项公式后,让学生思考如何认识通项公式、(板书)
(2)对公式的认识
由学生来说,最后归结:
①函数观点;
②方程思想(因在等差数列中已有认识,此处再复习巩固而已)、
这里强调方程思想解决问题、方程中有四个量,知三求一,这是公式最简单的应用,请学生举例(应能编出四类问题)、解题格式是什么?(不仅要会解题,还要注意规范表述的训练)
如果增加一个条件,就多知道了一个量,这是公式的更高层次的应用,下节课再研究、同学可以试着编几道题。
三、小结
1、本节课研究了等比数列的概念,得到了通项公式;
2、注意在研究内容与方法上要与等差数列相类比;
3、用方程的思想认识通项公式,并加以应用。
探究活动
将一张很大的薄纸对折,对折30次后(如果可能的话)有多厚?不妨假设这张纸的厚度为0、01毫米。
参考答案:
30次后,厚度为,这个厚度超过了世界最高的山峰——珠穆朗玛峰的高度。如果纸再薄一些,比如纸厚0、001毫米,对折34次就超过珠穆朗玛峰的高度了、还记得国王的承诺吗?第31个格子中的米已经是1073741824粒了,后边的格子中的米就更多了,最后一个格子中的米应是粒,用计算器算一下吧(对数算也行)。
高中数学教案范文模板下载篇8
各位老师:
大家好!
我叫______,来自____。我说课的题目是《古典概型》,内容选自于高中教材新课程人教A版必修3第三章第二节,课时安排为两个课时,本节课内容为第一课时。下面我将从教材分析、教学目标分析、教法与学法分析、教学过程分析四大方面来阐述我对这节课的分析和设计:
一、教材分析
1.教材所处的地位和作用
古典概型是一种特殊的数学模型,也是一种最基本的概率模型,在概率论中占有相当重要的地位。它承接着前面学过的随机事件的概率及其性质,又是以后学习条件概率的基础,起到承前启后的作用。
2.教学的重点和难点
重点:理解古典概型及其概率计算公式。
难点:古典概型的判断及把一些实际问题转化成古典概型。
二、教学目标分析
1.知识与技能目标
(1)通过试验理解基本事件的概念和特点
(2)在数学建模的过程中,抽离出古典概型的两个基本特征,推导出古典概型下的概率的计算公式。
2、过程与方法:
经历公式的推导过程,体验由特殊到一般的数学思想方法。
3、情感态度与价值观:
(1)用具有现实意义的实例,激发学生的学习兴趣,培养学生勇于探索,善于发现的创新思想。
(2)让学生掌握"理论来源于实践,并把理论应用于实践"的辨证思想。
三、教法与学法分析
1、教法分析:根据本节课的特点,采用引导发现和归纳概括相结合的教学方法,通过提出问题、思考问题、解决问题等教学过程,观察对比、概括归纳古典概型的概念及其概率公式,再通过具体问题的提出和解决,来激发学生的学习兴趣,调动学生的主体能动性,让每一个学生充分地参与到学习活动中来。
2、学法分析:学生在教师创设的问题情景中,通过观察、类比、思考、探究、概括、归纳和动手尝试相结合,体现了学生的主体地位,培养了学生由具体到抽象,由特殊到一般的数学思维能力,形成了实事求是的科学态度。
㈠创设情景、引入新课
在课前,教师布置任务,以小组为单位,完成下面两个模拟试验:
试验一:抛掷一枚质地均匀的硬币,分别记录"正面朝上"和"反面朝上"的次数,要求每个数学小组至少完成20次(最好是整十数),最后由代表汇总;
试验二:抛掷一枚质地均匀的骰子,分别记录"1点"、"2点"、"3点"、"4点"、"5点"和"6点"的次数,要求每个数学小组至少完成60次(最好是整十数),最后由代表汇总。
在课上,学生展示模拟试验的操作方法和试验结果,并与同学交流活动感受,教师最后汇总方法、结果和感受,并提出两个问题。
1.用模拟试验的方法来求某一随机事件的概率好不好?为什么?
不好,要求出某一随机事件的概率,需要进行大量的试验,并且求出来的结果是频率,而不是概率。
2.根据以前的学习,上述两个模拟试验的每个结果之间都有什么特点?]
「设计意图」通过课前的模拟实验,让学生感受与他人合作的重要性,培养学生运用数学语言的能力。随着新问题的提出,激发了学生的求知欲望,通过观察对比,培养了学生发现问题的能力。
㈡思考交流、形成概念
学生观察对比得出两个模拟试验的相同点和不同点,教师给出基本事件的概念,并对相关特点加以说明,加深对新概念的理解。
[基本事件有如下的两个特点:
(1)任何两个基本事件是互斥的;
(2)任何事件(除不可能事件)都可以表示成基本事件的和.]
「设计意图」让学生从问题的相同点和不同点中找出研究对象的对立统一面,这能培养学生分析问题的能力,同时也教会学生运用对立统一的辩证唯物主义观点来分析问题的一种方法。教师的注解可以使学生更好的把握问题的关键。
例1从字母a、b、c、d中任意取出两个不同字母的试验中,有哪些基本事件?
先让学生尝试着列出所有的基本事件,教师再讲解用树状图列举问题的优点。
「设计意图」将数形结合和分类讨论的思想渗透到具体问题中来。由于没有学习排列组合,因此用列举法列举基本事件的个数,不仅能让学生直观的感受到对象的总数,而且还能使学生在列举的时候作到不重不漏。解决了求古典概型中基本事件总数这一难点
观察对比,发现两个模拟试验和例1的共同特点:
让学生先观察对比,找出两个模拟试验和例1的共同特点,再概括总结得到的结论,教师最后补充说明。
[经概括总结后得到:
(1)试验中所有可能出现的基本事件只有有限个;(有限性)
(2)每个基本事件出现的可能性相等。(等可能性)
我们将具有这两个特点的概率模型称为古典概率概型,简称古典概型。
「设计意图」培养运用从具体到抽象、从特殊到一般的辩证唯物主义观点分析问题的能力,充分体现了数学的化归思想。启发诱导的同时,训练了学生观察和概括归纳的能力。通过列出相同和不同点,能让学生很好的理解古典概型。
㈢观察分析、推导方程
问题思考:在古典概型下,基本事件出现的概率是多少?随机事件出现的概率如何计算?
教师提出问题,引导学生类比分析两个模拟试验和例1的概率,先通过用概率加法公式求出随机事件的概率,再对比概率结果,发现其中的联系,最后概括总结得出古典概型计算任何事件的概率计算公式:
「设计意图」鼓励学生运用观察类比和从具体到抽象、从特殊到一般的辩证唯物主义方法来分析问题,同时让学生感受数学化归思想的优越性和这一做法的合理性,突出了古典概型的概率计算公式这一重点。
提问:
(1)在例1的实验中,出现字母"d"的概率是多少?
(2)在使用古典概型的概率公式时,应该注意什么?
「设计意图」教师提问,学生回答,深化对古典概型的概率计算公式的理解,也抓住了解决古典概型的概率计算的关键。
㈣例题分析、推广应用
例2单选题是标准化考试中常用的题型,一般是从A,B,c,D四个选项中选择一个正确答案。如果考生掌握了考差的内容,他可以选择唯一正确的答案。假设考生不会做,他随机的选择一个答案,问他答对的概率是多少?
学生先思考再回答,教师对学生没有注意到的关键点加以说明。
「设计意图」让学生明确决概率的计算问题的关键是:先要判断该概率模型是不是古典概型,再要找出随机事件A包含的基本事件的个数和试验中基本事件的总数。巩固学生对已学知识的掌握。
例3同时掷两个骰子,计算:
(1)一共有多少种不同的结果?
(2)其中向上的点数之和是5的结果有多少种?
(3)向上的点数之和是5的概率是多少?
先给出问题,再让学生完成,然后引导学生分析问题,发现解答中存在的问题。引导学生用列表来列举试验中的基本事件的总数。
「设计意图」利用列表数形结合和分类讨论,既能形象直观地列出基本事件的总数,又能做到列举的不重不漏。深化巩固对古典概型及其概率计算公式的理解。培养学生运用数形结合的思想,提高发现问题、分析问题、解决问题的能力,增强学生数学思维情趣,形成学习数学知识的积极态度。
㈤探究思想、巩固深化
问题思考:为什么要把两个骰子标上记号?如果不标记号会出现什么情况?你能解释其中的原因吗?
要求学生观察对比两种结果,找出问题产生的原因。
「设计意图」通过观察对比,发现两种结果不同的根本原因是--研究的问题是否满足古典概型,从而再次突出了古典概型这一教学重点,体现了学生的主体地位,逐渐养成自主探究能力。
㈥总结概括、加深理解
1.基本事件的特点
2.古典概型的特点
3.古典概型的概率计算公式
学生小结归纳,不足的地方老师补充说明。
「设计意图」使学生对本节课的知识有一个系统全面的认识,并把学过的相关知识有机地串联起来,便于记忆和应用,也进一步升华了这节课所要表达的本质思想,让学生的认知更上一层。
㈦布置作业
课本练习1、2、3
「设计意图」进一步让学生掌握古典概型及其概率公式,并能够学以致用,加深对本节课的理解。
高中数学教案范文模板下载篇9
2。2。1等差数列学案
一、预习问题:
1、等差数列的定义:一般地,如果一个数列从起,每一项与它的前一项的差等于同一个,那么这个数列就叫等差数列,这个常数叫做等差数列的,通常用字母表示。
2、等差中项:若三个数组成等差数列,那么A叫做与的,
即或。
3、等差数列的单调性:等差数列的公差时,数列为递增数列;时,数列为递减数列;时,数列为常数列;等差数列不可能是。
4、等差数列的通项公式:。
5、判断正误:
①1,2,3,4,5是等差数列;()
②1,1,2,3,4,5是等差数列;()
③数列6,4,2,0是公差为2的等差数列;()
④数列是公差为的等差数列;()
⑤数列是等差数列;()
⑥若,则成等差数列;()
⑦若,则数列成等差数列;()
⑧等差数列是相邻两项中后项与前项之差等于非零常数的数列;()
⑨等差数列的公差是该数列中任何相邻两项的差。()
6、思考:如何证明一个数列是等差数列。
二、实战操作:
例1、(1)求等差数列8,5,2,的第20项。
(2)是不是等差数列中的项?如果是,是第几项?
(3)已知数列的公差则
例2、已知数列的通项公式为,其中为常数,那么这个数列一定是等差数列吗?
例3、已知5个数成等差数列,它们的和为5,平方和为求这5个数。
高中数学教案范文模板下载篇10
一、教材分析
1.教材所处的地位和作用
在学习了随机事件、频率、概率的意义和性质及用概率解决实际问题和古典概型的概念后,进一步体会用频率估计概率思想。它是对古典概型问题的一种模拟,也是对古典概型知识的深化,同时它也是为了更广泛、高效地解决一些实际问题、体现信息技术的优越性而新增的内容。
2.教学的重点和难点
重点:正确理解随机数的概念,并能应用计算器或计算机产生随机数。
难点:建立概率模型,应用计算器或计算机来模拟试验的方法近似计算概率,解决一些较简单的现实问题。
二、教学目标分析
1、知识与技能:
(1)了解随机数的概念;
(2)利用计算机产生随机数,并能直接统计出频数与频率。
2、过程与方法:
(1)通过对现实生活中具体的概率问题的探究,感知应用数学解决问题的方法,体会数学知识与现实世界的联系,培养逻辑推理能力;
(2)通过模拟试验,感知应用数字解决问题的方法,自觉养成动手、动脑的良好习惯
3、情感态度与价值观:
通过数学与探究活动,体会理论来源于实践并应用于实践的辩证唯物主义观点.
三、教学方法与手段分析
1、教学方法:本节课我主要采用启发探究式的教学模式。
2、教学手段:利用多媒体技术优化课堂教学
四、教学过程分析
㈠创设情境、引入新课
情境1:假设你作为一名食品卫生工作人员,要对某超市内的80袋小包装饼干中抽取10袋进行卫生达标检验,你打算如何操作?
预设学生回答:
⑴采用简单随机抽样方法(抽签法)
⑵采用简单随机抽样方法(随机数表法)
教师总结得出:随机数就是在一定范围内随机产生的数,并且得到这个范围内每一数的机会一样。(引入课题)
「设计意图」(1)回忆统计知识中利用随机抽样方法如抽签法、随机数表法等进行抽样的步骤和特征;(2)从具体试验中了解随机数的含义。
情境2:在抛硬币和掷骰子的试验中,是用频率估计概率。假如现在要作10000次试验,你打算怎么办?大家可能觉得这样做试验花费时间太多了,有没有其他方法可以代替试验呢?
「设计意图」当需要随机数的量很大时,用手工试验产生随机数速度太慢,从而说明利用现代信息技术的重要性,体现利用计算器或计算机产生随机数的必要性。
㈡操作实践、了解新知
教师:向学生介绍计算器的操作,让他们了解随机函数的原理。可事先编制几个小问题,在课堂上带着学生用计算器(科学计算器或图形计算器)操作一遍,让学生熟悉如何用计算器产生随机数。
「设计意图」通过操作熟悉计算器操作流程,在明白原理后,通过让学生自己按照规则操作,熟悉计算器产生随机数的操作流程,了解随机数。
问题1:抛一枚质地均匀的硬币出现正面向上的概率是50,你能设计一种利用计算器模拟掷硬币的试验来验证这个结论吗?
思考:随着模拟次数的不同,结果是否有区别,为什么?
「设计意图」⑴设计概率模型是解决概率问题的难点,也是能解决概率问题的关键,是数学建模的第一步。⑵抛硬币是最熟悉、最简单的问题,很自然会想到把正面向上、反面向上这两个基本事件用两个随机数来代替。(题目让学生通过熟悉50想到用随机数0,1来模拟,为后面问题4每天下雨的概率为40的概率建模作第一次小铺垫。)⑶熟悉利用计算器模拟试验的操作流程,为解决后面例题模拟下雨作好铺垫。
问题2:(1)刚才我们利用了计算器来产生随机数,我们知道计算机有许多软件有统计功能,你知道哪些软件具有随机函数这个功能?
(2)你会利用统计软件Excel来产生随机数0,1吗?你能设计一种利用计算机模拟掷硬币的试验吗?
「设计意图」⑴了解有许多统计软件都有随机函数这个功能,并与前面第一章所学的用程序语言编写程序相联系;⑵Excel是学生比较熟悉的统计软件,也可让学生回顾初中用Excel画统计图的一些功能和知识,其次让学生掌握多种随机模拟试验方法。
问题3:(1)你能在Excel软件中画试验次数从1到100次的频率分布折线图吗?
(2)当试验次数为1000,1500时,你能说说出现正面向上的频率有些什么变化?
「设计意图」⑴应用随机模拟方法估计古典概型中随机事件的概率值;
⑵体会频率的随机性与相对稳定性,经历用计算机产生数据,整理数据,分析数据,画统计图的全过程,使学生相信统计结果的真实性、随机性及规律性。
㈢讲练结合、巩固新知
问题4:天气预报说,在今后的三天中,每一天下雨的概率均为40,这三天中恰有两天下雨的概率是多少?
问1:能用古典概型的计算公式求解吗?
你能说明一下这为什么不是古典概型吗?
问2:你如何模拟每一天下雨的概率为40?
「设计意图」⑴问题分层提出,降低本题难度。如何模拟每一天下雨的概率40是解决这道题的关键,是随机模拟方法应用的重点,也是难点之一。
⑵巩固用随机模拟方法估计未知量的基本思想,明确利用随机模拟方法也可解决不是古典概型而比较复杂的概率应用题。
归纳步骤:第一步,设计概率模型;
第二步,进行模拟试验;
方法一:(随机模拟方法--计算器模拟)利用计算器随机函数;
方法二:(随机模拟方法--计算机模拟)
第三步,统计试验的结果。
课堂检测将一枚质地均匀的硬币连掷三次,出现"2个正面朝上、1个反面朝上"和"1个正面朝上、2个反面朝上"的概率各是多少?并用随机模拟的方法做100次试验,计算各自的频数。
「设计意图」通过练习,进一步巩固学生对本节课知识的掌握。
㈣归纳小结
(1)你能归纳利用随机模拟方法估计概率的步骤吗?
(2)你能体会到随机模拟的优势吗?请举例说说。
「设计意图」⑴通过问题的思考和解决,使学生理解模拟方法的优点,并充分利用信息技术的优势;⑵是对知识的进一步理解与思考,又是对本节内容的回顾与总结。
㈤布置练习:
课本练习3、4
「设计意图」课后作业的布置是为了检验学生对本节课内容的理解和运用程度,并促使学生进一步巩固和掌握所学内容。
[内容结束]
高中数学教案范文模板下载篇11
教学内容:
简单的排列组合
教学目标:
1.使学生通过观察、猜测、实验、验证等活动,找出简单事件的排列数或组合数。
2.培养学生有序地、全面地思考问题的意识和习惯。
教学过程:
1.借助操作活动或学生易于理解的事例来帮助学生找出组合数。师生共同分析练习二十五第1题。让学生小组讨论,充分发表自己的意见。
2.利用直观图示帮助学生有序地、不重不漏地找出早餐搭配的组合数。
3、出示练习二十五第3题。
学生看题后,四人小组讨论出有多少种求组合数的方法。
4、学生汇报。
(1)图示表示法(两种)。引导学生用画简图的方式来表示抽象的数学知识。
(2)其他的方法,例如聪聪或明明分别可以和每一个小朋友合影(分步时,可以把确定聪聪作为第一步,也可以把确定明明作为第一步),教学时充分发挥学生的创造性。至于学生用哪种方法求出来,都没关系。但要引导学生思考如何才能不重不漏,发展学生有序地思考问题的意识和能力。
(3)学生自己用图示表示时,可以很开放,比如,可以用正方形表示聪聪,圆形表示明明,并分别在正方形和圆形里标上序号。实际这是发展学生用数学化的符号表示具体事件的能力的一个体现。
(4)如果学生用简图的方式来表示有困难,也可以让学生回忆一下二年级上册的例子或借助学具卡片摆一摆。
2.“做一做”
(1)练习二十五第7题。
通过活动的方式让学生不重不漏地把所有取钱的情况写出来。
(2)练习二十五第9题。
用两种图示法表示两两组合的方式(比较简单的两种方式)。在教学中也要允许有的学生把所有的情况逐一罗列出来,只要他通过自己的方法探索出所有的组合数,都是应该鼓励的。
高中数学教案范文模板下载篇12
教学目标:
1、在新学期能够以积极的学习态度投入到学习中去,并用高昂的兴趣参与学习。
2、熟悉新学期音乐课的要求,并能够有意识的遵守,以良好的学习习惯规范自己在课堂中的表现。
教学重点:
养成良好的学习习惯
教学过程:
一.师生互相问好,拉近彼此的距离。
二.师生共同演绎节目,学生表演,老师表演,增进彼此感情,与孩子打成一片。
三.讲述新学期音乐课要求:
1、按时按顺序进入教室,不迟到,不早退。
2、进入教室不得高声喧哗打闹,保持安静状态。
3、认真保持教室卫生,不乱扔果皮纸屑,不随地吐痰。
4、课堂上发言积极有序,有礼有节,争做文明小学生。
5、做到爱护公共物品,轻拿轻放,损坏照价赔偿。
6、上课保持良好的状态,以积极的态度认真学习。
四、习惯养成训练,听音乐做出相关要求:
1、起立、坐下
2、安静
3、师生问好
4、请坐好
5、同桌面对
五、分组选拨,并对小组长提出要求
1、四人一小组
2、讲述课堂要求,小组合作学习,评价真实客观,学会欣赏别人;正当优秀小组,小组团结合作,富有创新;组长根据组员的表现,从纪律、学习习惯、上课表现上进行评价计分,获得3分就可获得一张绿卡。
小结:
希望第一节课能让师生互相留下印象,更好的进行今后的音乐教学,把音乐课上的更加的有声有色。
高中数学教案范文模板下载篇13
如果一个数列从第2项起,每一项与它的前一项的比等于同一个常数,这个数列就叫做等比数列。这个常数叫做等比数列的`公比,公比通常用字母q表示。
(1)等比数列的通项公式是:An=A1×q^(n-1)
若通项公式变形为an=a1/q-q^n(n∈N-),当q>0时,则可把an看作自变量n的函数,点(n,an)是曲线y=a1/q-q^x上的一群孤立的点。
(2)任意两项am,an的关系为an=am·q^(n-m)
(3)从等比数列的定义、通项公式、前n项和公式可以推出:a1·an=a2·an-1=a3·an-2=…=ak·an-k+1,k∈{1,2,…,n}
(4)等比中项:aq·ap=ar^2,ar则为ap,aq等比中项。
(5)等比求和:Sn=a1+a2+a3+.......+an
①当q≠1时,Sn=a1(1-q^n)/(1-q)或Sn=(a1-an×q)÷(1-q)
②当q=1时,Sn=n×a1(q=1)
记πn=a1·a2…an,则有π2n-1=(an)2n-1,π2n+1=(an+1)2n+1
另外,一个各项均为正数的等比数列各项取同底数数后构成一个等差数列;反之,以任一个正数C为底,用一个等差数列的各项做指数构造幂Can,则是等比数列。在这个意义下,我们说:一个正项等比数列与等差数列是“同构”的。
高中数学教案范文模板下载篇14
一、学情分析
本节课是在学生已学知识的基础上进行展开学习的,也是对以前所学知识的巩固和发展,但对学生的知识准备情况来看,学生对相关基础知识掌握情况是很好,所以在复习时要及时对学生相关知识进行提问,然后开展对本节课的巩固性复习。而本节课学生会遇到的困难有:数轴、坐标的表示;平面向量的坐标表示;平面向量的坐标运算。
二、考纲要求
1.会用坐标表示平面向量的加法、减法与数乘运算.
2.理解用坐标表示的平面向量共线的条件.
3.掌握数量积的坐标表达式,会进行平面向量数量积的运算.
4.能用坐标表示两个向量的夹角,理解用坐标表示的平面向量垂直的条件.
三、教学过程
(一) 知识梳理:
1.向量坐标的求法
(1)若向量的起点是坐标原点,则终点坐标即为向量的坐标.
(2)设A(x1,y1),B(x2,y2),则
=_________________
| |=_______________
(二)平面向量坐标运算
1.向量加法、减法、数乘向量
设 =(x1,y1), =(x2,y2),则
+ = - = λ = .
2.向量平行的坐标表示
设 =(x1,y1), =(x2,y2),则 ∥ ⇔________________.
(三)核心考点·习题演练
考点1.平面向量的坐标运算
例1.已知A(-2,4),B(3,-1),C(-3,-4).设 (1)求3 + -3 ;
(2)求满足 =m +n 的实数m,n;
练:(2015江苏,6)已知向量 =(2,1), =(1,-2),若m +n =(9,-8)
(m,n∈R),则m-n的值为 .
考点2平面向量共线的坐标表示
例2:平面内给定三个向量 =(3,2), =(-1,2), =(4,1)
若( +k )∥(2 - ),求实数k的值;
练:(2015,四川,4)已知向量 =(1,2), =(1,0), =(3,4).若λ为实数,( +λ )∥ ,则λ= ( )
思考:向量共线有哪几种表示形式?两向量共线的充要条件有哪些作用?
方法总结:
1.向量共线的两种表示形式
设a=(x1,y1),b=(x2,y2),①a∥b⇒a=λb(b≠0);②a∥b⇔x1y2-x2y1=0.至于使用哪种形式,应视题目的具体条件而定,一般情况涉及坐标的应用②.
2.两向量共线的充要条件的作用
判断两向量是否共线(平行的问题;另外,利用两向量共线的充要条件可以列出方程(组),求出未知数的值.
考点3平面向量数量积的坐标运算
例3“已知正方形ABCD的边长为1,点E是AB边上的动点,
则 的值为 ; 的值为 .
【提示】解决涉及几何图形的向量数量积运算问题时,可建立直角坐标系利用向量的数量积的坐标表示来运算,这样可以使数量积的运算变得简捷.
练:(2014,安徽,13)设 =(1,2), =(1,1), = +k .若 ⊥ ,则实数k的值等于( )
【思考】两非零向量 ⊥ 的充要条件: · =0⇔ .
解题心得:
(1)当已知向量的坐标时,可利用坐标法求解,即若a=(x1,y1),b=(x2,y2),则a·b=x1x2+y1y2.
(2)解决涉及几何图形的向量数量积运算问题时,可建立直角坐标系利用向量的数量积的坐标表示来运算,这样可以使数量积的运算变得简捷.
(3)两非零向量a⊥b的充要条件:a·b=0⇔x1x2+y1y2=0.
考点4:平面向量模的坐标表示
例4:(2015湖南,理8)已知点A,B,C在圆x2+y2=1上运动,且AB⊥BC,若点P的坐标为(2,0),则 的值为( )
A.6 B.7 C.8 D.9
练:(2016,上海,12)
在平面直角坐标系中,已知A(1,0),B(0,-1),P是曲线上一个动点,则 的取值范围是?
解题心得:
求向量的模的方法:
(1)公式法,利用|a|= 及(a±b)2=|a|2±2a·b+|b|2,把向量的模的运算转化为数量积运算;
(2)几何法,利用向量加减法的平行四边形法则或三角形法则作出向量,再利用余弦定理等方法求解..
五、课后作业(课后习题1、2题)
高中数学教案范文模板下载篇15
一、教学目标
知识与技能:
理解任意角的概念(包括正角、负角、零角)与区间角的概念。
过程与方法:
会建立直角坐标系讨论任意角,能判断象限角,会书写终边相同角的集合;掌握区间角的集合的书写。
情感态度与价值观:
1、提高学生的推理能力;
2、培养学生应用意识。
二、教学重点、难点:
教学重点:
任意角概念的理解;区间角的集合的书写。
教学难点:
终边相同角的集合的表示;区间角的集合的书写。
三、教学过程
(一)导入新课
1、回顾角的定义
①角的第一种定义是有公共端点的两条射线组成的图形叫做角。
②角的第二种定义是角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所形成的图形。
(二)教学新课
1、角的有关概念:
①角的定义:
角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所形成的图形。
②角的名称:
注意:
⑴在不引起混淆的情况下,“角α”或“∠α”可以简化成“α”;
⑵零角的终边与始边重合,如果α是零角α=0°;
⑶角的概念经过推广后,已包括正角、负角和零角。
⑤练习:请说出角α、β、γ各是多少度?
2、象限角的概念:
①定义:若将角顶点与原点重合,角的始边与x轴的非负半轴重合,那么角的终边(端点除外)在第几象限,我们就说这个角是第几象限角。
例1、如图⑴⑵中的角分别属于第几象限角?