五年级数学上册知识点重点归纳
本文共计6002个文字,预计阅读时间需要25分钟。
知识点对朋友们的学习非常重要,大家一定要认真掌握。知识点也可以理解为考试时会涉及到的知识,也就是大纲的分支。下面是小编给大家整理的五年级数学上册知识点重点归纳,仅供参考希望能帮助到大家。
五年级数学上册知识点重点归纳篇1
简易方程:方程axb=c(a,b,c是常数)叫做简易方程。
方程:含有未知数的等式叫做方程。(注意方程是等式,又含有未知数,两者缺一不可)
方程和算术式不同。算术式是一个式子,它由运算符号和已知数组成,它表示未知数。方程是一个等式,在方程里的未知数可以参加运算,并且只有当未知数为特定的数值时,方程才成立。
方程的解
使方程左右两边相等的未知数的值,叫做方程的解。
如果两个方程的解相同,那么这两个方程叫做同解方程。
13.方程的同解原理:
(1)方程的两边都加或减同一个数或同一个等式所得的方程与原方程是同解方程。
(2)方程的两边同乘或同除同一个不为0的数所得的方程与原方程是同解方程。
解方程:解方程,求方程的解的过程叫做解方程。
列方程解应用题的意义:
用方程式去解答应用题求得应用题的未知量的方法。
列方程解答应用题的步骤
(1)弄清题意,确定未知数并用x表示;
(2)找出题中的数量之间的相等关系;
(3)列方程,解方程;
(4)检查或验算,写出答案。
列方程解应用题的方法
综合法
先把应用题中已知数(量)和所设未知数(量)列成有关的代数式,再找出它们之间的等量关系,进而列出方程。这是从部分到整体的一种思维过程,其思考方向是从已知到未知。
分析法
先找出等量关系,再根据具体建立等量关系的需要,把应用题中已知数(量)和所设的未知数(量)列成有关的代数式进而列出方程。这是从整体到部分的一种思维过程,其思考方向是从未知到已知。
列方程解应用题的范围:小学范围内常用方程解的应用题:
(1)一般应用题;
(2)和倍、差倍问题;
(3)几何形体的周长、面积、体积计算;
(4)分数、百分数应用题;
(5)比和比例应用题。
五年级数学上册知识点重点归纳篇2
第一单元小数乘法
1.小数乘法计算方法:按整数乘法的法则算出积;再看因数中一共有几位小数,就从积的右边起数出几位点上小数点。
注意:计算结果中,小数部分末尾的0要去掉,把小数化简;小数部分位数不够时,要用0占位。
2、一个数(0除外)乘大于1的数,积比原来的数大; 一个数(0除外)乘小于1的数,积比原来的数小。
3、求近似数的方法一般有三种:
⑴四舍五入法 (常用) ; ⑵进一法; ⑶去尾法
4、计算钱数,保留两位小数,表示精确到分。保留一位小数,表示精确到角。
5、小数四则运算顺序跟整数四则运算顺序是一样的。
6、运算定律和性质:
加法交换律:a+b=b+a 加法结合律:(a+b)+c=a+(b+c)
乘法:乘法交换律:a×b=b×a
乘法结合律:三个数相乘,先把前两个数相乘,再和最后一个数相乘,或先把后两个数相乘,再和第一个数相乘,积不变. (a×b)×c=a×(b×c)
乘法分配律:两个数的和(或者差)同一个数相乘,可以先把这两个数(或者被减数与减数)分别同这个数相乘,再相加(或者再相减)。 (a+b)×c=a×c+b×c或 (a-b)×c=a×c-b×c
减法性质:从一个数里连续减去两个数,我们可以减去两个减数的和,或者交换两个减数的位置。 a-b-c=a-(b+c) a-b-c=a-c-b
除法性质:从一个数里连续除数两个数,我们可以除以两个除数的积,或者交换两个除数的位置。a÷b÷c=a÷(b×c) a÷b÷c=a÷c÷b
去括号: 括号前是加号的,去掉括号后,括号内的符号不变号;括号前是减号的,去掉括号后,括号内的符号要变号。
a+(b-c)=a+b-c a-(b-c)=a-b+c
第二单元小数除法
9、小数除以整数的计算方法:小数除以整数,按整数除法的方法去除,商的小数点要和被除数的小数点对齐。整数部分不够除,商0,点上小数点。如果有余数,要添0再除。
10、除数是小数的除法的计算方法:先将除数和被除数扩大相同的倍数(把小数点向右移动相同的位数),使除数变成整数,再按“除数是整数的小数除法”的法则进行计算。
注意:向右移动小数点时,如果被除数的位数不够,在被除数的末尾用0补足。
12、除法中的变化规律:①商不变性质:被除数和除数同时乘或除以同一个数(0除外),商不变。②除数不变,被除数乘或除以几,商随着乘或除以几。③被除数不变,除数乘或除以几,商就除以或乘几。④被除数大于除数,商就大于1;被除数小于除数,商就小于1。⑤一个数除以大于1的数,商就小于被除数;一个数除以小于1的数,商就大于被除数。⑥积不变性质:一个因数乘一个数,另一个除以同一个数(0除外),积不变。⑦一个因数不变,另一个数乘几,积就乘几。⑧一个因数不变,另一个因数除以几,积就除以几。
13、一个数的小数部分,从某一位起,一个数字或者几个数字依次不断重复出现,这样的小数叫做循环小数。 X
一个循环小数的小数部分,依次不断重复出现的数字。(如6.321321…的循环节是321,简便记法为6.321;如0.33…的循环节是3,简便记法为0.3。)循环小数是无限小数,无限小数不一定是循环小数。
14、小数部分的位数是有限的小数,叫做有限小数。小数部分的位数是无限的小数,叫做无限小数。无限小数分为无限循环小数和无限不循环小数。
第三单元观察物体
15、从不同的角度观察物体,看到的形状可能是不同的;观察长方体或正方体时,从固定位置最多能看到三个面,最少看到一个面。圆柱体从上面看到的形状是圆形,从其他方向看到的是长形或正方形。球体无论从哪个角度看,看到的形状都是圆形。
第四单元简易方程
16、在含有字母的式子里,字母中间的乘号可以记作“”,也可以省略不写。加号、减号、除号以及数与数之间的乘号不能省略。
17、a×a可以写作aa或a ,a 读作a的平方 2a表示a+a
(1a=a这里的“1”我们不写)
18、方程:含有未知数的等式称为方程(方程必须满足的条件:必须是等式 必须有未知数,两者缺一不可)。使方程左右两边相等的未知数的值,叫做方程的解。求方程的解的过程叫做解方程。
19、解方程原理:天平平衡
等式性质一:方程两边同时加上或减去同一个数,左右两边仍然相等。等式性质二:方程两边同时乘或除以同一个不为0数,左右两边仍然相等。
21、所有的方程都是等式,但等式不一定都是方程。
22、方程的检验过程:方程左边 = 方程右边
23、方程的解是一个数; 解方程式是一个计算过程。 所以,X=…是方程的解。
常见的等量关系:①路程=速度×时间
②工作总量=工作效率×工作时间
③总价=单价 × 数量
第五单元多边形的面积
23、长方形周长=(长+宽)×2 字母公式:C=(a+b)×2
长方形面积=长×宽 字母公式:S=ab
正方形周长=边长×4 字母公式:C=4a
正方形面积=边长×边长 字母公式:S=a2
平行四边形的面积=底×高 字母公式: S=ah
三角形的面积=底×高÷2 字母公式: S=ah÷2
(三角形的底=面积×2÷高; 三角形的高=面积×2÷底)
梯形的面积=(上底+下底)×高÷2 字母公式: S=(a+b)h÷2(上底=面积×2÷高-下底,下底=面积×2÷高-上底;
高=面积×2÷(上底+下底) )
25、三角形面积公式推导: 平行四边形可以转化成一个长方形; 两个完全一样的三角形可以拼成一个平行四边形,
长方形的长相当于平行四边形的底;长方形的宽相当于平行四边形的高;因为长方形面积=长×宽,所以平行四边形面积=底×高,长方形的面积等于平行四边形的面积。 平行四边形的底相当于三角形的底;平行四边形的高相当于三角形的高;平行四边形的面积等于等底等高三角形面积的2倍。
27两个完全一样的梯形可以拼成一个平行四边形。
平行四边形的底相当于梯形的上下底之和;平行四边形的高相当于梯形的高;平行四边形面积等于梯形面积的2倍,因为平行四边形面积=底×高,所以梯形面积=(上底+下底)×高÷2
28、等底等高的平行四边形面积相等;等底等高的三角形面积相等;
等底等高的平行四边形面积是三角形面积的2倍。
29、长方形框架拉成平行四边形,周长不变,面积变小。
第六单元统计与可能性
31、平均数=总数量÷总份数
32、中位数的优点是不受偏大或偏小数据的影响,用它代表全体数据的一般水平更合适。
第七单元数学广角
33、数不仅可以用来表示数量和顺序,还可以用来编码。
34、邮政编码:由6位组成,前2位表示省(直辖市、自治区)
0 5 4 0 0 1
前3位表示邮区, 前4位表示县(市),最后2位表示投递局
35、身份证18位,如130521197803010019
13表示河北省 05表示邢台市 21表示邢台县 19780301是出生日期 001是顺序码 9校验码
倒数第二位的数字用来表示性别,单数表示男,双数表示女。
五年级数学上册知识点重点归纳篇3
1、数不仅可以用来表示数量和顺序,还可以用来编码。
2、邮政编码:由6位组成,前2位表示省(直辖市、自治区),前3位表示邮区,前4位表示县(市),最后2位表示投递局(所)。
3、身份证号码:由18位组成,(1)前1、2位数字表示:所在省份的代码;(2)第3、4位数字表示:所在城市的代码;
(3)第5、6位数字表示:所在区县的代码;
(4)第7~14位数字表示:出生年、月、日;
(5)第15、16位数字表示:所在地的派出所的代码;
(6)第17位数字表示性别:奇数表示男性,偶数表示女性;
(7)第18位数字是校检码:用来检验身份证的正确性。校检码可以是0~9的数字,有时也用x表示。
五年级数学上册知识点重点归纳篇4
1、长方形面积=长×宽字母公式:s=ab
长方形周长=(长+宽)×2字母公式:c=(a+b)×2
2、正方形面积=边长×边长字母公式:s=或者s=a×a
正方形周长=边长×4字母公式:c=4a或者c=a×4
3、平行四边形面积=底×高字母公式:s=ah
4、三角形面积=底×高÷2字母公式:s=ah÷2
5、梯形面积=(上底+下底)×高÷2字母公式:s=(a+b)×h÷2
6、计算圆木、钢管等的根数:(顶层根数+底层根数)×层数÷2
7、等底等高的平行四边形面积相等。等底等高的三角形面积相等。
等底等高的三角形和平行四边形面积关系:三角形的面积是平行四边形面积的一半,平行四边形的面积是三角形面积的2倍。
8、组合图形:转化成已学的简单图形,通过加、减进行计算。
五年级数学上册知识点重点归纳篇5
1、用字母表运算定律。
加法交换律:a+b=b+a加法结合律:a+b+c=a+(b+c)
乘法交换律:a×b=b×a乘法结合律:a×b×c=a×(b×c)
乘法分配律:(a±b)×c=a×c±b×c
2、用字母表示计算公式。
长方形的周长公式:c=(a+b)×2长方形的面积公式:s=ab
正方形的周长公式:c=4a正方形的面积公式:s=
3、读作:x的平方,表示:两个x相乘。
2x表示:两个x相加,或者是2乘x。
4、①含有未知数的等式称为方程。
②使方程左右两边相等的未知数的值叫做方程的解。
③求方程的解的过程叫做解方程。
5、把下面的数量关系补充完整。
路程=(速度)×(时间)速度=(路程)÷(时间)时间=(路程)÷(速度)
总价=(单价)×(数量)单价=(总价)÷(数量)数量=(总价)÷(单价)
总产量=(单产量)×(数量)单产量=(总产量)÷(数量)
数量=(总产量)÷(单价)
工作总量=(工作效率)×(工作时间)
工作效率=(工作总量)÷(工作时间)
工作时间=(工作总量)÷(工作效率)
大数-小数=相差数大数-相差数=小数小数+相差数=大数
一倍量×倍数=几倍量几倍量÷倍数=一倍量
几倍量÷一倍量=倍数
被减数=减数+差减数=被减数-差加数=和-另一个加数
被除数=除数×商除数=被除数÷商因数=积÷另一个因数
五年级数学上册知识点重点归纳篇6
1、从不同的角度观察物体,看到的形状可能是不同的;观察长方体或正方体时,从固定位置最多能看到三个面。
2、正面、侧面、后面都是相对的,它是随着观察角度的变化而变化。通过观察、想象、猜测,培养空间想象力和思维能力,能正确辨认从正面、侧面、上面观察到的简单物体的形状。
3、构建空间想象力:
(1)、将两个完全一样的正方体并排放,要求想象画出以不同角度看到的样子(强调左右面是重合,故只能看见一个正方形)。
(2)、将一个正方体和圆柱体并排放,要求想象画出从不同角度看到的样子。
4、动手操作,思维拓展
用5个小正方体摆从正面看到的图形(你能摆出几种不同的方法)。(有多少种不同摆法,最少要用多少个小正方体,最多只能用多少个小正方体。)
五年级数学上册知识点重点归纳篇7
1、小数除法的意义:已知两个因数的积与其中的一个因数,求另一个因数的运算。如:2.6÷1.3表示已知两个因数的积2.6与其中的一个因数1.3,求另一个因数的运算。
小数除法的计算方法:
计算除数是整数的小数除法,按整数除法的计算方法去除,商的小数点要和被除数的小数点对齐,整数部分不够除,商0,点上小数点,继续除;如果有余数,要添0再除。
计算除数是小数的除法,先把除数转化成整数,除数的小数点向右移动几位,被除数的小数点也要向右移动几位,位数不够时,在被除数的末尾用0补足,然后按照除数是整数的小数除法进行计算。
2、取近似数的方法:
取近似数的方法有三种,①四舍五入法②进一法③去尾法
一般情况下,按要求取近似数时用四舍五入法,进一法、去尾法在解决实际问题的时候选择应用。
取商的近似数时,保留到哪一位,一定要除到那一位的下一位,然后用四舍五入的方法取近似数。没有要求时,除不尽的一般保留两位小数。
3、循环小数:一个数的.小数部分,从某一位起,一个数字或者几个数字依次不断重复出现,这样的小数叫做循环小数。依次不断重复出现的数字,叫做这个循环小数的的循环节。
4、循环小数的表示方法:
一种是用省略号表示,要写出两个完整的循环节,后面标上省略号。如:0.3636……1.587587……
另一种是简写的方法:即只写出一组循环节,然后在循环节的第一个数字和最后一个数上面点上圆点。如:12.
5、有限小数:小数部分的位数是有限的小数,叫做有限小数。
6、无限小数:小数部分的位数是无限的小数,叫做无限小数。
五年级数学上册知识点重点归纳篇8
第一单元《小数乘法》知识点
一、小数乘整数(利用因数的变化引起积的变化规律来计算小数乘法)
知识点一:
1、计算小数加法先把小数点对齐,再把相同数位上的数相加
2、计算小数乘法末尾对齐,按整数乘法法则进行计算。
知识点二:
积中小数末尾有0的乘法。先计算出小数乘整数的乘积后,积的小数末尾出现0,要再根据小数的性质去掉小数末尾的0。如:3.60“0”应划去
知识点三:
如果乘得的积的小数位数不够要在前面用0补足,再点上小数点。如0.02×2=0.04
知识点四:
计算整数因数末尾有0的小数乘法时,要把整数数位中不是0的最右侧数字与小数的末尾对齐。
思考:
小数乘整数与整数乘整数有什么不同?
1、小数乘整数中有一个因数是小数,所以积一般来说也是小数。
2小数乘法中积的小暑部分末尾如有0可以根据小数的基本性质去掉小数末尾的0而整数乘法中是不能去掉的。
二、小数乘小数
知识点一:
因数与积的小数位数的关系:因数中共有几位小数,积中就有几位小数。
知识点二:
小数乘法的一般计算方法:
先按整数乘法算出积,再给积点上小数点(看因数中一共有几位小数,就从积的右边起输出几位,点上小数点。)乘得的积的小数位数不够要在积的前面用0补足,在点小数点。
知识点三:
小数乘法的验算方法
1、把因数的位置交换相乘
2、用计算器来验算
三、积的近似数
知识点一:
先算出积,然后看要保留数位的下一位,再按四舍五入法求出结果,用约等号表示。
知识点二:
如果求得的近似数所求数位的数字是9而后一位数字又大于5需要进1,这是就要依次进一用0占位。如6.597保留两位为6.60
四、连乘、乘加、乘减
知识点一:
小数乘法要按照从左到右的顺序计算
知识点二:
小数的乘加运算与整数的乘加运算顺序相同。先乘法,后加法
整数乘法的交换律、结合律和分配律,对于小数乘法也适用。
五、简便运算
整数乘法的交换律、结合律和分配律,对于小数乘法也适用
计算连乘法时可应用乘法交换律、结合律将几位整数的两个数先乘,再乘另一个数,计算一步乘法时,可将接近整十、整百的数拆成整十整百的数和一位数相加减的算式,再应用乘法分配律简算。
对于不符合运算定律的算式,有些通过变形也可以应用。
乘法分配律也可以推广到相应的减法。