首页 > 学习资料 > 小学 > 五年级 >

小学生五年级数学复习知识点整理

雅韵悠长分享 70177

雅韵悠长 分享

本文共计17055个文字,预计阅读时间需要69分钟。

哪些才是我们真正需要的数学复习知识点呢?在现实学习生活中,不管我们学什么,都需要掌握一些知识点,知识点就是学习的重点。下面是小编给大家整理的小学生五年级数学复习知识点整理,仅供参考希望能帮助到大家。

小学生五年级数学复习知识点整理篇1

1、小数乘整数(P2、3):意义--求几个相同加数的和的简便运算。

如:1.5×3表示1.5的3倍是多少或3个1.5的和的简便运算。

计算方法:先把小数扩大成整数;按整数乘法的法则算出积;再看因数中一共有几位小数,就从积的右边起数出几位点上小数点。

2、小数乘小数(P4、5):意义--就是求这个数的几分之几是多少。

如:1.5×0.8就是求1.5的十分之八是多少。

1.5×1.8就是求1.5的1.8倍是多少。

计算方法:先把小数扩大成整数;按整数乘法的法则算出积;再看因数一共有几位小数,就从积的右边起数出几位点上小数点。

注意:计算结果中,小数部分末尾的0要去掉,把小数化简;小数部分位数不够时,要用0占位。

3、规律(1)(P9):一个数(0除外)乘大于1的数,积比原来的数大;

一个数(0除外)乘小于1的数,积比原来的数小。

4、求近似数的方法一般有三种:(P10)

⑴四舍五入法;⑵进一法;⑶去尾法

5、计算钱数,保留两位小数,表示计算到分。保留一位小数,表示计算到角。

6、(P11)小数四则运算顺序跟整数是一样的。

7、运算定律和性质:

加法:加法交换律:a+b=b+a加法结合律:(a+b)+c=a+(b+c)

减法:减法性质:a-b-c=a-(b+c)a-(b-c)=a-b+c

乘法:乘法交换律:a×b=b×a

乘法结合律:(a×b)×c=a×(b×c)

乘法分配律:(a+b)×c=a×c+b×c【(a-b)×c=a×c-b×c】

除法:除法性质:a÷b÷c=a÷(b×c)

小学生五年级数学复习知识点整理篇2

1、公式:

长方形:周长=(长+宽)×2--【长=周长÷2-宽;宽=周长÷2-长】字母公式:C=(a+b)×2

面积=面积=长×宽字母公式:S=ab

正方形:周长=边长×4字母公式:C=4a

平行四边形的面积=底×高字母公式:S=ah

三角形的面积=底×高÷2--【底=面积×2÷高;高=面积×2÷底】字母公式:S=ah÷2

梯形的面积=(上底+下底)×高÷2字母公式:S=(a+b)h÷2

【上底=面积×2÷高-下底,下底=面积×2÷高-上底;高=面积×2÷(上底+下底)】

2、平行四边形面积公式推导:剪拼、平移

3、三角形面积公式推导:旋转

平行四边形可以转化成一个长方形;

两个完全一样的三角形可以拼成一个平行四边形,

长方形的长相当于平行四边形的底;

平行四边形的底相当于三角形的底;

长方形的宽相当于平行四边形的高;

平行四边形的高相当于三角形的高;

长方形的面积等于平行四边形的面积,

平行四边形的面积等于三角形面积的2倍,

因为长方形面积=长×宽,所以平行四边形面积=底×高。

因为平行四边形面积=因为平行四边形面积=底×高,所以三角形面积=底×高÷2

4、梯形面积公式推导:旋转

5、三角形、梯形的第二种推导方法老师已讲,自己看书

两个完全一样的梯形可以拼成一个平行四边形,知道就行。

平行四边形的底相当于梯形的上下底之和;

平行四边形的高相当于梯形的高;

平行四边形面积等于梯形面积的2倍,

因为平行四边形面积=底×高,所以梯形面积=(上底+下底)×高÷2

6、等底等高的平行四边形面积相等;

等底等高的三角形面积相等;

等底等高的平行四边形面积是三角形面积的2倍。

7、长方形框架拉成平行四边形,周长不变,面积变小。

8、组合图形:转化成已学的简单图形,通过加、减进行计算。

小学生五年级数学复习知识点整理篇3

第一部分:《分数乘法》

1、分数乘整数的意义:分数乘整数的意义同整数乘法的意义相同,就是求几个相同加数的和的简便运算。

2、分数乘整数的计算方法:分母不变,分子和整数相乘的积作分子。能约分的要约成最简分数。

3、计算时,可以先约分再计算。

4、理解打折的含义。例如:九折,是指现价是原价的十分之九;九五折,是指现价是原价的百分之九十五。

5、分数乘分数的计算方法:分子相乘做分子,分母相乘做分母,能约分的可以先约分。计算结果要求是最简分数。

6、比较分数相乘的积与每一个乘数的大小。乘数乘小于1的数,积小于乘数;乘数乘等于1的数,积等于乘数;乘数乘大于1的数,积大于乘数;真分数相乘积小于任何一个乘数;真分数与假分数相乘积大于真分数小于假分数。

7、教材中一单元重点题目:P3试一试第1题,练一练第1题。P7折一折画图表示乘法算式,看到图能写出乘法算式。P10、11全部练习题。

第二部分:《分数除法》

1、倒数。如果两个数的乘积是1,那么我们称其中一个数是另一个数的倒数。倒数是对两个数来说的,并不是孤立存在的。

2、1的倒数仍是1;0没有倒数。0没有倒数,是因为在分数中,0不能做分母。

3、一个数除以分数的意义与整数除法的意义相同;一个数除以分数等于乘这个数的倒数。

4、除以一个数(0除外)等于乘这个数的倒数。

5、比较商与被除数的大小。除数小于1,商大于被除数;除数等于1。商等于被除数;除数大于1,商小于被除数。

6、三单元重点题目:P25:会用图表示除法算式,看到图能写出除法算式。P27的画一画:会用线段图表示除法算式。P30的第3、4题。P31、32所有题目。P34、35所有题目。

第三部分《长方体》

1、由6个长方形(特殊情况有两个相对的面是正方形)围成的立体图形叫做长方体。两个面相交的边叫做棱。三条棱相交的点叫做顶点。相交于一个顶点的三条棱的长度分别叫做长方体的长、宽、高。在一个长方体中,相对的面完全相同,相对的棱长度相等。

2、由6个完全相同的正方形围成的立体图形叫做正方体(也叫做立方体)。正方体有12条棱,它们的长度都相等,所有的面都完全相同。

3、长方体和正方体的面、棱和顶点的数目都一样,只是正方体的棱长都相等,正方体可以说是长、宽、高都相等的长方体,它是一种特殊的长方体。

4、长方体有6个面,8个顶点,12条棱,相对的面的面积相等,相对的棱的长度相等。一个长方体最多有6个面是长方形,最少有4个面是长方形,最多有2个面是正方形。正方体有6个面,每个面都是正方形,每个面的面积都相等,有12条棱,每条的棱的长度都相等。

5、长方体的棱长总和=(长+宽+高)×4 L=(a+b+h)×4

长=棱长总和÷4-宽-高a=L÷4-b-h

宽=棱长总和÷4-长-高b=L÷4-a-h

高=棱长总和÷4-长-宽h=L÷4-a-b

正方体的棱长总和=棱长×12 L=a×12

正方体的棱长=棱长总和÷12 a=L÷12

6、长方体或正方体6个面和总面积叫做它的表面积。

长方体的`表面积=(长×宽+长×高+宽×高)×2 S=2(ab+ah+bh)

无底(或无盖)长方体表面积=长×宽+(长×高+宽×高)×2

S=2(ab+ah+bh)-ab S=2(ah+bh)+ab

无底又无盖长方体表面积=(长×高+宽×高)×2 S=2(ah+bh)

正方体的表面积=棱长×棱长×6 S=a×a×6

7、知道长方体表面积求长或宽或高时,用方程解。

8、物体所占空间的大小叫做物体的体积。

长方体的体积=长×宽×高V=abh

长=体积÷宽÷高a=V÷b÷h

宽=体积÷长÷高b=V÷a÷h

高=体积÷长÷宽h= V÷a÷b

正方体的体积=棱长×棱长×棱长V=a×a×a

10、长方体和正方体的体积还可以用底面积乘高来计算,V=Sh 。

10、冰箱的容积用“升”作单位;游泳池、水库存水量常用立方米做单位。

11、体积:物体所占空间的大小叫作物体的体积。容积:容器所能容纳入体的体积叫做物体的容积。箱子、油桶、仓库等所能容纳物体的体积,通常叫做他们的容积。

12、常用的容积单位有升和毫升也可以写成L和ml。

比如1升=1立方分米1毫升=1立方厘米1升=1000毫升

13、体积单位换算

14、进率:1立方米=1000立方分米=1000000立方厘米

1立方分米=1000立方厘米=1升=1000毫升

1立方厘米=1毫升

1平方米=100平方分米=10000平方厘米

1平方千米=100公顷=1000000平方米

15、二单元重点题目:P15的第4题。P17的两个第1题。P19的第2,3,4,5题。P21的找规律共3道题。P22、23所有题目。

16、四单元重点题目:P42第2题。P45的第1,2,3,4题。P49的第5,7题。P51的第1,2,3题。P52、53所有题目。

第四部分:《分数的混合运算》

1、分数混合运算的运算顺序与整数混合运算的运算顺序相同。先乘除后加减,有括号的先算括号里面的。最后结果是最简分数。

2、分数乘除法基本应用题解题方法:

(1)找准单位“1”,并在题目的文字下面标注。

(2)确定乘法或除法:已知单位“1”,用乘法,

未知单位“1”,用除法。

(3)对应量和分率:单位“1” ×对应分率=对应的量

对应的量÷对应分率=单位“1”的量

若用方程,一般设单位“1”为未知数。

3、五单元重点题目:P56例题中线段图、P58例题中线段图、P60例题中的线段图(会考用线段图分析应用题中的数量关系)。P59第5题。P60第3、4题。P62、63所有题目。

第五部分:《百分数》

1、百分数的意义。百分数表示一个数另一个数的百分之几。百分数也叫百分比、百分率。

2、小数化成百分数的方法:把小数化成百分数,只要把小数点向右移动两位,同时在后面添上百分号;把分数化成百分数:可以先把分数化成小数(除不尽时,通常保留三位小数),再写成百分数;也可以把分子分母同时乘一个数将其化成一百分之几的数,再写成百分数。

3、求一个数的百分之几是多少,方法同求一个数的几分之几是多少。

4、百分数化成分数,先把百分数改写成分数,能约分的要约成最简分数。百分数化成小数时,要把百分号去掉,同时把小数点向左移动两位。

5、百分数应用题知识点归纳

(1)求一个数的百分之几是多少一个数(单位“1”)×百分率

(2)已知一个数的百分之几是多少,求这个数。部分量÷百分率=一个数(单位“1”)

(3)求常见的百分率如:达标率、及格率、成活率、发芽率、出勤率等a率=a的数量÷总量×100%

6、现价=原价×折扣原价=现价÷折扣折扣=现价÷原价×100%

5、六单元重点题目:P65练一练第1题。P68第1题。P72第1、5题。P73、74、75所有题目。P77、78所有题目。P80的试一试1,2,3,题。

第六部分《统计》

1、将一组数据从小到大(或从大到小)排列,中间的数称为这组数据的中位数。

2、一组数据中出现次数最多的数称为这组数据的众数。

3、中位数的求法:将一组数据按大小的顺序排列,如果是奇数个数据,中间的数就为这组数据的中位数,如果是偶数个数据,中间两个数的平均数为这组数据的中位数。

4、众数:在一组数据中,出现次数最多的数,是这组数据的众数。在一组数据中,众数可能不止一个,也可能没有众数。

5、条形统计图。优点:很容易看出各种数量的多少。注意:画条形统计图时,直条的宽窄必须相同。取一个单位长度表示数量的多少要根据具体情况而确定;

6、折线统计图。用一个单位长度表示一定的数量,根据数量的多少描出各点,然后把各点用线段顺次连接起来。优点:不但可以表示数量的多少,而且能够清楚地表示出数量增减变化的情况。

8、扇形统计图。用整个圆的面积表示总数,用扇形面积表示各部分所占总数的百分数。优点:很清楚地表示出各部分同总数之间的关系。

9、七单元重点题目:P85试一试。P87练一练。P89第2、3题。P90、91所有题目。

10、P93~96总复习所有题目。

小学五年级下册数学知识点汇总2

知识点归纳整理

1、轴对称:

如果一个图形沿一条直线折叠,直线两侧的图形能够互相重合,这个图形就叫做轴对称图形,这时,我们也说这个图形关于这条直线(成轴)对称。

2、轴对称图形的性质

把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线对称,这条直线叫做对称轴,折叠后重合的点是对应点。轴对称和轴对称图形的特性是相同的,对应点到对称轴的距离都是相等的。

3、轴对称的性质

经过线段中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线。这样我们就得到了以下性质:

(1)如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线。

(2)类似地,轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线。

(3)线段的垂直平分线上的点与这条线段的两个端点的距离相等。

(4)对称轴是到线段两端距离相等的点的集合。

4、轴对称图形的作用

(1)可以通过对称轴的一边从而画出另一边;

(2)可以通过画对称轴得出的两个图形全等。

5、因数

整数B能整除整数A,A叫作B的倍数,B就叫做A的因数或约数。在自然数的范围内例:在算式6÷2=3中,2、3就是6的因数。

6、自然数的因数(举例)

6的因数有:1和6,2和3。

10的因数有:1和10,2和5。

15的因数有:1和15,3和5。

25的因数有:1和25,5。

7、因数的分类

除法里,如果被除数除以除数,所得的商都是自然数而没有余数,就说被除数是除数的倍数,除数和商是被除数的因数。

我们将一个合数分成几个质数相乘的形式,这样的几个质数叫做这个合数的质因数。

8、倍数:对于整数m,能被n整除(n/m),那么m就是n的倍数。如15能够被3或5整除,因此15是3的倍数,也是5的倍数。

一个数的倍数有无数个,也就是说一个数的倍数的集合为无限集。注意:不能把一个数单独叫做倍数,只能说谁是谁的倍数。

9、完全数:完全数又称完美数或完备数,是一些特殊的自然数。它所有的真因子(即除了自身以外的约数)的和(即因子函数),恰好等于它本身。

10、偶数:整数中,能够被2整除的数,叫做偶数。

11、奇数:整数中,能被2整除的数是偶数,不能被2整除的数是奇数

12、奇数偶数的性质

关于奇数和偶数,有下面的性质:

(1)奇数不会同时是偶数;两个连续整数中必是一个奇数一个偶数;

(2)奇数跟奇数和是偶数;偶数跟奇数的和是奇数;任意多个偶数的和都是偶数;

(3)两个奇(偶)数的差是偶数;一个偶数与一个奇数的差是奇数;

(4)除2外所有的正偶数均为合数;

(5)相邻偶数最大公约数为2,最小公倍数为它们乘积的一半。

(6)奇数的积是奇数;偶数的积是偶数;奇数与偶数的积是偶数;

(7)偶数的个位上一定是0、2、4、6、8;奇数的个位上是1、3、5、7、9。

13、质数:指在一个大于1的自然数中,除了1和此整数自身外,没法被其他自然数整除的数。

14、合数:比1大但不是素数的数称为合数。1和0既非素数也非合数。合数是由若干个质数相乘而得到的。

质数是合数的基础,没有质数就没有合数。

15、长方体:由六个长方形(特殊情况有两个相对的面是正方形)围成的立体图形叫长方体.长方体的任意一个面的对面都与它完全相同。

16、长、宽、高:长方体的每一个矩形都叫做长方体的面,面与面相交的线叫做长方体的棱,三条棱相交的点叫做长方体的顶点,相交于一个顶点的三条棱的长度分别叫做长方体的长、宽、高。

17、长方体的特征:

(1)长方体有6个面,每个面都是长方形,至少有两个相对的两个面完全相同。特殊情况时有两个面是正方形,其他四个面都是长方形,并且完全相同。

(2)长方体有12条棱,相对的棱长度相等。可分为三组,每一组有4条棱。还可分为四组,每一组有3条棱。

(3)长方体有8个顶点。每个顶点连接三条棱。

(4)长方体相邻的两条棱互相(相互)垂直。

18、长方体的表面积

因为相对的2个面相等,所以先算上下两个面,再算前后两个面,最后算左右两个面。

设一个长方体的长、宽、高分别为a、b、c,则它的表面积S:

S = 2ab + 2bc+ 2ca

= 2(ab + bc + ca)

19、长方体的体积

长方体的体积=长×宽×高

设一个长方体的长、宽、高分别为a、b、c,则它的体积V:

V = abc=Sh

20、长方体的棱长

长方体的棱长之和=(长+宽+高)×4

长方体棱长字母公式C=4(a+b+c)

相对的棱长长度相等

长方体棱长分为3组,每组4条棱。每一组的棱长度相等

21、正方体:侧面和底面均为正方形的直平行六面体叫正方体,即棱长都相等的六面体,又称“立方体”、“正六面体”。正方体是特殊的长方体。

22、正方体的特征

(1)有6个面,每个面完全相同。

(2)有8个顶点。

(3)有12条棱,每条棱长度相等。

(4)相邻的两条棱互相(相互)垂直。

23、正方体的表面积:

因为6个面全部相等,所以正方体的表面积=一个面的面积×6=棱长×棱长×6

设一个正方体的棱长为a,则它的表面积S:

S=6×a×a或等于S=6a2

24、正方体的体积

正方体的体积=棱长×棱长×棱长;设一个正方体的棱长为a,则它的体积为:

V=a×a×a

25、正方体的展开图

正方体的平面展开图一共有11种。

26、分数:把单位“1”平均分成若干份,表示这样的一份或几份的数叫分数。表示这样的一份的数叫分数单位。

27、分数分类:分数可以分成:真分数,假分数,带分数,百分数

28、真分数:分子比分母小的分数,叫做真分数。真分数小于一。如:1/2,3/5,8/9等等。真分数一般是在正数的范围内研究的。

29、假分数:分子大于或者等于分母的分数叫假分数,假分数大于1或等于1.

假分数通常可以化为带分数或整数。如果分子和分母成倍数关系,就可化为整数,如不是倍数关系,则化为带分数。

30、分数的基本性质:分数的分子和分母同时乘以或除以一个不为0的数,分数的值不变。

31、约分:把一个分数化成和它相等,但分子、分母都比较小的分数,叫做约分

32、公因数:在两个或两个以上的自然数中,如果它们有相同的因数,那么这些因数就叫做它们的公因数。任何两个自然数都有公因数1.(除零以外)而这些公因数中最大的那个称为这些正整数的最大公因数。

33、通分:根据分数的基本性质,把几个异分母分数化成与原来分数相等的且分母相同的分数,叫做通分。

34、通分方法

(1)求出原来几个分数的分母的最小公倍数

(2)根据分数的基本性质,把原来分数化成以这个最小公倍数为分母的分数

35、公倍数:指在两个或两个以上的自然数中,如果它们有相同的倍数,这些倍数就是它们的公倍数。这些公倍数中最小的,称为这些整数的最小公倍数

36、分数加减法

(1)同分母分数相加减,分母不变,即分数单位不变,分子相加减,最后要化成最简分数。

(2)异分母分数相加减,先通分,即运用分数的基本性质将异分母分数转化为同分母分数,改变其分数单位而大小不变,再按同分母分数相加减法去计算,最后要化成最简分数。

37、统计图:复式折线统计图是用一个单位长度表示一定的数量,根据数量的多少描出各点,然后把各点用线段顺次连接起来,以折线的上升或下降来表示统计数量增减变化。折线统计图不但可以表示出数量的多少,而且还能够清楚的表示出数量增减变化的情况。

小学五年级下册数学知识点汇总3

知识重点

1、计算

小数乘法,小数除法,简易方程,观察物体,多边形的面积,统计与可能性,数学广角和数学综合运用等。

在前面学习整数四则运算和小数加、减法的基础上,继续培养学生小数的四则运算能力。

2、方程

用字母表示数、等式的性质、解简单的方程、用方程表示等量关系进而解决简单的实际问题等内容,进一步发展学生的抽象思维能力,提高解决问题的能力。

3、空间与物体

在空间与图形方面,这一册教材安排了观察物体和多边形的面积两个单元。在已有知识和经验的基础上,通过丰富的现实的数学活动,让学生获得探究学习的经历,能辨认从不同方位看到的物体的形状和相对位置。

4、图形的转换

探索并体会各种图形的特征、图形之间的关系,及图形之间的转化,掌握平行四边形、三角形、梯形的面积公式及公式之间的关系,渗透平移、旋转、转化的数学思想方法,促进学生空间观念的进一步发展。

5、统计与概率

教材让学生学习有关可能性和中位数的知识。通过操作与实验,让学生体验事件发生的等可能性以及游戏规则的公平性,学会求一些事件发生的可能性。

6、平均数

理解平均数和中位数各自的统计意义、各自的特征和适用范围;进一步体会统计和概率在现实生活中的作用。

7、实际应用

通过观察、猜测、实验、推理等活动向学生渗透初步的数字编码的数学思想方法,体会运用数字的有规律排列可以使人与人之间的信息交换变得安全、有序、快捷,给人们的生活和工作带来便利,感受数学的魅力。

必考应用题

1、一辆摩托车和一辆货车同时从两站相对开出,摩托车每小时行驶29.5千米,货车每小时行驶70.5千米,经过2.7小时两车相遇。两车站之间的公路长多少千米?

2、将一根铁丝剪成两段,第一段长38.7米,第二段比第一段长度的1.5倍短6.8米。第二段有多长?

3、甲数是560,乙数是70,甲数给乙数多少后,甲数是乙数的4倍?

4、一个房间的长是12米,宽是10米。现用每块0.64平方米的瓷砖铺地面,至少需要多少块瓷砖?

5、非洲鸵鸟奔跑的速度是每小时72km,比野兔的2倍少12km,野兔的奔跑速度是每小时多少千米?

6、张老师给学校买了8个足球和4个排球,每个足球65元,张老师一共花了700元,每个排球多少元?

7、一个长方形铁丝框的长是8米,周长是28米。

(1)这个铁丝框的宽是多少米?

(2)如果将这个铁丝框改成正方形,这个正方形铁丝框的边长是多少米?

8、汽车每小时行45千米,摩托车每小时行60千米。它们分别从甲、乙两地同时开出相向而行,4小时后相遇,相遇后两车继续前行,则摩托车到达甲地还需行几小时?

9、小兔子采蘑菇,晴天每天能采36只,雨天每天只能采24只,它一连几天共采了288只蘑菇,平均每天采32只。这些天中有多少天是雨天?

10、一种瓶装速溶咖啡粉净重600克,每冲一杯咖啡需要9克咖啡粉和2.5克方糖。这瓶咖啡粉最多可以冲多少杯咖啡?

11、两辆汽车同时从甲地开往乙地,其中一辆汽车每小时行52.5千米,2.8小时到达乙地;这时另一辆汽车离乙地14千米。若两辆汽车同时分别从甲乙两地相向而行,大约几小时相遇?(得数保留一位小数)

12、一间教室长8.5米,宽4.5米。用每块0.25平方米的瓷砖铺地面,一共要用多少块瓷砖?

13、一筐苹果,连筐共重33.5千克,卖掉一半后,连筐称还有18.15千克。原有苹果多少千克?筐重多少千克?

14、某粮仓有172.48吨大米,5辆卡车7次运走全部大米,平均每辆卡车每次运大米约是多少吨?(得数保留两位小数)

15、五位同学有同样多的存款,在每一次捐款中,每人捐出16元后,五位同学剩下的钱正好等于原来3人的存款数。原来每位同学有存款多少元?

16、甲乙两城相距263.2千米,一辆客车2.8小时行完全程,一辆货车3.5小时行完全程。客车的速度比货车的速度快多少?

17、小明买了5千克梨和5千克苹果共付33.5元,小芳买了4千克梨和5千克苹果共付31元。每千克苹果和每千克梨各多少元?

18、一个正方形的周长是9.48米,它的边长是多少米?

19、一辆汽车每小时行驶5千米要用汽油0.8千克。如果汽车现有汽油50千克,要行驶325千米,需要加油吗?

20、饲养场有鸡3600只,比鸭的只数的5倍还多120只。饲养场有鸭多少只?

21、有两袋大米,甲袋大米的重量是乙袋的1.2倍。如果从甲袋往乙袋倒5千克大米,两袋就一样重。原来两袋大米各是多少千克?

22、做8个大铁盒和6个小铁盒,共用白铁皮8.8平方米。每个大铁盒用白铁皮0.8平方米,每个小铁盒用白铁皮多少平方米?

23、学校远有篮球、排球共21个,现又买来若干个足球。小刚发现,篮球比买来的足球多5个,排球比买来的足球少4个。求学校买来多少个足球?

24、李小燕买了5千克苹果和6千克橘子,共付21.6元。已知苹果的单价是橘子的1.2倍,李晓燕买苹果和橘子各需付多少钱?

25、飞机每小时飞行1000千米,比火车速度的12倍还多40千米。火车每小时行驶多少千米?

26、商店运来28筐苹果和24筐梨,一共重1180千克。已知每筐苹果重25千克,没筐梨重多少千克?

27、师徒二人合作一批零件,原计划8天完成。后来,师傅因为有特殊任务只做了6天,结果徒弟比原计划多做了3天。任务完成时,师父比徒弟少做了100个。已知徒弟每天做50个零件,师傅每天做多少个?

28、甲桶有油85千克,乙桶有油58千克。从甲筒倒入乙桶多少千克油,两桶里的油正好相等?

29、有同样多的黑、白棋子各一盒。如果每次取出4个黑棋子、3个白妻子,黑棋子被取完时,还剩16个白棋子。黑、白棋子各有多少个?

30、小红买了3个本子和5支铅笔,共付了7.6元。每个本子1.2元,每支铅笔多少元?

31、青山果园有桃树450棵,比杏树的2倍还多50棵。杏树有多少棵?

32、一个工人计划做38个零件,已经做了4个小时,每小时做5个,剩下的3小时做完,平均每小时做多少个?

小学生五年级数学复习知识点整理篇4

第一单元 方程

1、表示相等关系的式子叫做等式。

2、含有未知数的等式是方程。

3、方程一定是等式;等式不一定是方程。等式方程

4、等式两边同时加上或减去同一个数,所得结果仍然是等式。这是等式的性质。

等式两边同时乘或除以同一个不等于0的数,所得结果仍然是等式。这也是等式的性质。

5、求方程中未知数的过程,叫做解方程。

解方程时常用的关系式:

一个加数=和-另一个加数 减数=被减数-差 被减数=减数+差

一个因数=积另一个因数 除数=被除数商 被除数=商除数

注意:解完方程,要养成检验的好习惯。

6、五个连续的自然数(或连续的奇数,连续的偶数)的和,等于中间的一个数的5倍。奇数个连续的自然数(或连续的奇数,连续的偶数)的和个数=中间数

7、4个连续的自然数(或连续的奇数,连续的偶数)的和,等于中间两个数或首尾两个数的和个数2(高斯求和公式)

8、列方程解应用题的思路:A、审题并弄懂题目的已知条件和所求问题。B、理清题目的等量关系。C、设未知数,一般是把所求的数用X表示。D、根据等量关系列出方程E、解方程F、检验G、作答。

第二单元 确定位置

1、确定位置时,竖排叫做列,横排叫做行。确定第几列一般从左往右数,确定第几行一般从前往后数。

2、数对(x,y)第1个数表示第几列(x),第2个数表示第几行(y),写数对时,是先写列数,再写行数。

3、从地球仪上看,连接北极和南极两点的是经线,垂直于经线的线圈是纬线,经线和纬线、分别按一定的顺序编排表示经度和纬度,经度和纬度都用度()、分()、秒()表示。

4、将某个点向左右平移几格,只是列(x)上的数字发生加减变化,向左减,向右加,行(y)上的数字不变。举例:将点(6,3)的位置向右平移2个单位后的位置是(8,3),列6+2=8;将点(6,3)的位置向左平移2个单位后的位置是(4,3),列6-2=4。

5、将某个点向上下平移几格,只是行(y)上的数字发生加减变化,向上减,向下加,列(x)上的数字不变。举例:将点(6,3)的位置向上平移2个单位后的位置是(6,5),行3+2=5;将点(6,3)的位置向下平移2个单位后的位置是(6,1),列3-2=1。

第三单元 公倍数和公因数

1、一个数最小的因数是1,最大的因数是它本身,一个数因数的个数是有限的。

一个数最小的倍数是它本身,没有最大的倍数。一个数倍数的个数是无限的。

一个数最大的因数等于这个数最小的倍数。

2、几个数公有的倍数,叫做这几个数的公倍数,其中最小的一个,叫做这几个数的最小公倍数,用符号[ ,]表示。几个数的公倍数也是无限的。

3、两个数公有的因数,叫做这两个数的公因数,其中最大的一个,叫做这两个数的最大公因数,用符号( , )。两个数的公因数也是有限的。

4、两个素数的积一定是合数。举例:35=15,15是合数。

5、两个数的最小公倍数一定是它们的最大公因数的倍数。举例:[6,8]=24,(6,8)=2,24是2的倍数。

6、求最大公因数和最小公倍数的方法:

倍数关系的两个数,最大公因数是较小的数,最小公倍数是较大的数。举例:15和5,[15,5]=15,(15,5)=5

素数关系的两个数,最大公因数是1,最小公倍数是它们的乘积。举例:[3,7]=21,(3,7)=1

一个素数和一个合数,最大公因数是1,最小公倍数是它们的乘积。[5,8]=40,(5,8)=1

相邻关系的两个数,最大公因数是1,最小公倍数是它们的乘积。[9,8]=72,(9,8)=1

特殊关系的数(两个都是合数,一个是奇数,一个是偶数,但他们之间只有一个公因数1),比如4和9、4和15、10和21,最大公因数是1,最小公倍数是它们的乘积。

一般关系的两个数,求最大公因数用列举法或短除法,求最小公倍数用大数翻倍法或短除法。(详见课本31页内容)

第四单元 认识分数

1、一个物体、一个计量单位或由许多物体组成的一个整体,都可以用自然数1来表示,通常我们把它叫做单位1。把单位1平均分成若干份,表示这样的一份或几份的数叫做分数。表示其中一份的数,叫做分数单位。一个分数的分母是几,它的分数单位就是几分之一。

2、分母越大,分数单位越小,最大的分数单位是2(1)。

3、举例说明一个分数的意义:7(3)表示把单位1平均分成7份,表示这样的3份.还表示把3平均分成7份,表示这样的1份。7(3)吨表示把1吨平均分成7份,表示这样的3份.还表示把3吨平均分成7份,表示这样的1份。

4、4米的5(1)和1米的5(4)同样长。

5、分子比分母小的分数叫做真分数;分子比分母大或者分子和分母相等的分数叫做假分数。6、真分数小于1。假分数大于或等于1。真分数总是小于假分数。

7、男生人数是女生人数的4(3),则女生人数是男生人数的3(4)。

8、分数与除法的关系:被除数相当于分数的分子,除数相当于分数的分母。

被除数除数= 除数(被除数)如果用a表示被除数,b表示除数,可以写成ab=b(a)(b0)

9、能化成整数的假分数,它们的分子都是分母的倍数。反过来,分子是分母倍数的假分数,都能化成整数。(用分子除以分母)

10、分子不是分母倍数的假分数,可以写成整数和真分数合成的数,通常叫做带分数。带分数是假分数的另一种形式。例如,3(4)就可以看作是3(3)(就是1)和3(1)合成的数,写作

1 3(1),读作一又三分之一。带分数都大于真分数,同时也都大于1。

11、把分数化成小数的方法:用分数的分子除以分母。

12、把小数化成分数的方法:如果是一位小数就写成十分之几,是两位小数就写成百分之几,是三位小数就写成千分之几,

13、把假分数转化成整数或带分数的方法:分子除以分母,如果分子是分母的倍数,可以化成整数;如果分子不是分母的倍数,可以化成带分数,除得的商作为带分数的整数部分,余数作为分数部分的分子,分母不变。

14、把带分数化成假分数的方法:把整数乘分母加分子作为假分数的分子,分母不变。

15、把不是0的整数化成假分数的方法:用整数与分母相乘的积作分子。

16、大于7(3)而小于7(5)的分数有无数个;分数单位是7(1)只有7(4)一个。

17、分数大小比较的应用题:工作效率大的快,工作时间小的快。

18、一些特殊分数的值:

2(1) = 0.5 4(1) = 0.25 4(3) =0.75 5(1) =0.2 5(2) =0.4 5(3) =0.6

5(4) =0.8 8(1) =0.125 8(3) =0.375 8(5) =0.625 8(7) =0.875 10(1) =0.1 16(1) =0.0625

16(3) =0.1875 16(5) =0.3125 20(1) =0.05 25(1) =0.04 50(1) =0.02 100(1) =0.01

19、求一个数是(占)另一个数的几分之几,用除法列算式计算。

第五单元 找规律

1、单向平移求不同的和的个数规律:

方格的总个数每次框出的个数+1=得到不同和的个数

2、双向平移

如果平移的方向既有横又有纵,我们只要分别探究出两个方向上各有几种不同的排列方法(和单向平移的规律一样),相乘的积是多少一共就有多少种不同的排列方法。

一共有多少种贴法=沿着长的贴法沿着宽的贴法

3、中间的数框出的个数=框出的每个数的和

框出的每个数的和框出的个数=中间的数

(注意:有些数字的和是不能框出来的,(1)是框出的每个数的和框出的个数中间的数;(2)是虽然框出的每个数的和框出的个数=中间的数,但中间的数在边上;(3)出现有空白方格。)

第六单元 分数的基本性质

1、分数的分子和分母同时乘或除以相同的数(0除外),分数的大小不变,这是分数的基本性质。它和整数除法中的商不变规律类似。

2、分子和分母只有公因数1,这样的分数叫最简分数。约分时,通常要约成最简分数。

3、把一个分数化成同它相等,但分子、分母都比较小的分数,叫做约分。

约分方法:直接除以分子、分母的最大公因数。 例如:

4、把几个分母不同的分数(也叫做异分母分数)分别化成和原来分数相等的同分母分数,叫做通分。通分过程中,相同的分母叫做这几个分数的公分母。通分时,一般用原来几个分母的最小公倍数作公分母。

5、比较异分母分数大小的方法:(1)先通分转化成同分母的分数再比较。(2)化成小数后再比较。(3)先通分转化成同分子的分数再比较。(4)十字相乘法。

球的反弹实验

球的反弹高度实验的结论:

(1)用同一种球从不同高度下落,表示反弹高度与下落高度关系的分数大致不变,这说明同一种球的弹性是一样的。

(2)用不同的球从同一个高度下落,表示反弹高度与下落高度关系的分数是不一样的,这说明不同的球的弹性是不一样的。

第七单元 统计

1、从复式折线统计图中,不仅能看出数量的多少和数量增减变化的情况,而且便于这两组相关数据进行比较。

2、作复式折线统计图步骤:

①写标题和统计时间;

②注明图例(实线和虚线表示);

③分别描点、标数;

④实线和虚线的区分(画线用直尺)。

注意:先画表示实线的统计图,再画虚线统计图。不能同时描点画线,以免混淆。(也可以先画虚线的统计图)

第八单元 分数加法和减法

1、计算异分母分数加减法时,要先通分,再按同分母分数加减法计算;计算结果能约分要约成最简分数,是假分数的要化为带分数;计算后要验算。

2、分母的最大公因数是1,分子都是1的分数相加,得数的分母是两个分母的积,分子是两个分母的和。分母的最大公因数是1,分子都是1的分数相减,得数的分母是两个分母的积,分子是两个分母的差。

3、分母分子相差越大,分数就越接近0;分子接近分母的一半,分数就接近2(1);分子分母越接近,分数就越接近1。

4、分数加、减法混合运算顺序与整数、小数加减混合运算顺序相同。没有小括号,从左往右,依次运算;有小括号,先算小括号里的算式。

5、整数加法的运算律,整数减法的运算性质同样可以在分数加、减法中运用,使计算简便。乘法分配律也适用分数的简便计算。

6、裂项公式(用于特殊的简便计算)

密铺

1、由线段围成的图形(三角形、长方形、正方形、梯形、平行四边形)能够密铺

2、由曲线围成的图形(圆)不能够密铺。

第九单元 解决问题策略

1、倒推法是一种非常重要的数学思考方法,在计算、图形转换、时间推算等许多实际问题中都有应用。倒推时还用到一些反义词呢

2、要正确解决多次倒推的策略就是对题目先进行整理,通过整理过程来理清思路,再倒推回去或列方程解答。

3、对于条件出现一半的复杂倒推题目,通常通过画线段图帮助分析列算式来解决。

第十单元 圆

1、圆是由一条曲线围成的平面图形。(以前所学的图形如长方形、梯形等都是由几条线段围成的平面图形)

2、画圆时,针尖固定的一点是圆心,通常用字母O表示;连接圆心和圆上任意一点的线段是半径,通常用字母r表示;通过圆心并且两端都在圆上的线段是直径,通常用字母d表示。在同一个圆里,有无数条半径和直径。在同一个圆里,所有半径的长度都相等,所有直径的长度都相等。

3、用圆规画圆的过程:先两脚叉开,再固定针尖,最后旋转成圆。画圆时要注意:针尖必须固定在一点,不可移动;两脚间的距离必须保持不变;要旋转一周。

4、在同一个圆里,半径是直径的一半,直径是半径的2倍。(d=2r, r=d2)

5、圆是轴对称图形,有无数条对称轴,对称轴就是直径。

6、圆心决定圆的位置,半径决定圆的大小。所以要比较两圆的大小,就是比较两个圆的直径或半径。

7、正方形里最大的圆。两者联系:边长=直径

画法:(1)画出正方形的两条对角线;(2)以对角线交点为圆心,以边长为直径画圆。

8、长方形里最大的圆。两者联系:宽=直径

画法:(1)画出长方形的两条对角线;(2)以对角线交点为圆心,以边长为直径画圆。

9、同一个圆内的所有线段中,圆的直径是最长的。

10、车轮滚动一周前进的路程就是车轮的周长。

每分前进米数(速度)=车轮的周长转数

11、任何一个圆的周长除以它直径的商都是一个固定的数,我们把它叫做圆周率。

用字母(读pi)表示。是一个无限不循环小数。=3.141592653

我们在计算时,一般保留两位小数,取它的近似值3.14。3.14

12、如果用C表示圆的周长,那么C=d或C = 2r

13、求圆的半径或直径的方法:d = C圆 r= C圆 2= C圆2

14、半圆的周长等于圆周长的一半加一条直径。 C半圆= r+2r C半圆= d2+d

15、常用的3.14的倍数:

3.142=6.28 3.143=9.42 3.144=12.56 3.145=15.7 3.146=18.84

3.147=21.98 3.148=25.12 3.149=28.26 3.1412=37.68 3.1414=43.96

3.1416=50.24 3.1418=56.52 3.1424=75.36 3.1425=78.5

3.1436=113.04 3.1449=153.86 3.1464=200.96 3.1481=254.34

16、圆的面积公式:S圆=r2。圆的面积是半径平方的倍。

17、圆的面积推导:圆可以切拼成近似的长方形,长方形的面积与圆的面积相等(即S长方形=S圆);长方形的宽是圆的半径(即b=r);长方形的长是圆周长的一半(即a=2(C)=r)。即:S长方形= a b

S圆 = r r

= r2

S圆 = r2

注意:切拼后的长方形的周长比圆的周长多了两条半径。C长方形=2r+2r=C圆+d

18、半圆的面积是圆面积的一半。S半圆=r22

19、大小两个圆比较,半径的倍数=直径的倍数=周长的倍数,

面积的倍数=半径的倍数2

20、周长相等的平面图形中,圆的面积最大;面积相等的平面图形中,圆的周长最短。

21、求圆环的面积一般是用外圆的面积减去内圆的面积,还可以利用乘法分配律进行简便计算。S圆环=r2=(R2-r2)

22、常用的平方数:112=121 122=144 132=169 142=196 152=225 162=256 172=289 182=324 192=361 202=400

小学生五年级数学复习知识点整理篇5

整除的算式的特征:

1、除数、被除数都是自然数,且除数不为0。

2、被除数除以除数,商是自然数而没有余数。

例:15能被5整除,我们就说,15是5的

倍数,5是15的因数。

知识点一:因数

问题一:一个长方形,它的面积是12平方厘米,如果长方形的长和宽都是整数,请同学们猜一猜这个长方形的长和宽各是多少?

所以12的因数有:

注意:1、在说因数(或倍数)时,必须说明谁是谁的因数(或倍数)。不能单独说谁是因数(或倍数)。2、因数和倍数不能单独存在。

例1 18的因数有那些?

方法一:想18可以有哪两个数相乘得到18=1×18 18=2×9 18=3×6

方法二:根据整除的意义得到

18÷1=18 18÷2=9 18÷3=6

所以18的因数有:

表示方法:

1、列举法︰12的因数有:1,2,3,4,6,12

2、用集合表示︰

练习1:30的因数有哪些?36呢?

30的因数有:

36的因数有:

观察:18的最小因数是(),的因数是()

30的最小因数是(),的因数是)

36的最小因数是(),的因数是()

一个数的因数的个数是有限的,一个数的最小因数是(),因数是()

你要知道:

(1)1的因数只有1,的因数和最小的因数都是它本身。

(2)除1以外的整数,至少有两个因数。

(3)任何自然数都有因数1。

知识点二:倍数

问题二:2的倍数有哪些?

2的倍数有:2,4,6,8 …

例1、小蜗牛找倍数(找出3的倍数)。

练习3、5的倍数有哪些?7的倍数呢?

5的倍数:

7的倍数:

一个数的倍数的个数是(),一个数的最小的倍数是(),()的倍数。

用字母表示因数与倍数的关系:a — b = c(a、b、c都是不为0的整数)a、b都是c的因数,c是a和b的倍数。因数和倍数是相互依存的。

说一说:在0、3、4、7、15、16、77、31、62中择两个数,说一说谁是谁的因数?谁是谁的倍数?

1、根据算式:4×8=32

说一说,谁是谁的因数?谁是的倍数?

2、根据算式:63÷7=9

说一说,谁是谁的因数?谁是的倍数?

3、判断:1.2÷0.2=6我们能说0.2和6是1.2的因数;1.2是0.2的倍数,也是6的倍数吗?为什么?

知识点三:质数和合数

1、自然数按因数的个数来分:质数、合数、1、0四类。

(1)质数(或素数):只有1和它本身两个因数。

(2)合数:除了1和它本身还有别的因数(至少有三个因数:1、它本身、别的因数)。

(3)1:只有1个因数。“1”既不是质数,也不是合数。

注:

①最小的质数是2,最小的合数是4,连续的两个质数是2、3。

②每个合数都可以由几个质数相乘得到,质数相乘一定得合数。

③ 20以内的质数:有8个()

④ 100以内的质数有25个:()

关系:奇数×奇数=奇数质数×质数=合数

2、常见、最小

A的最小因数是:1;最小的奇数是:1;

A的因数是:本身;最小的偶数是:0;

A的最小倍数是:本身;最小的质数是:2;

最小的自然数是:0;最小的合数是:4;

3、分解质因数:把一个合数分解成多个质数相乘的形式。树状图

例:

分析:先把36写成两个因数相乘的形式,如果两个因数都是质数就不再进行分解了;如果两个因数中海油合数,那我们继续分解,一直分解到全部因数都是质数为止。把36分解质因数是:36=2×2×3×3

4、用短除法分解质因数(一个合数写成几个质数相乘的形式)。例:

分析:看上面两个例子,分别是用短除法对18,30分解质因数,左边的数字表示“商”,竖折下面的表示余数,要注意步骤。具体步骤是:

5、互质数:公因数只有1的两个数,叫做互质数。

两个质数的互质数:5和7

两个合数的互质数:8和9

一质一合的互质数:7和8

6、两数互质的特殊情况:

⑴1和任何自然数互质;

⑵相邻两个自然数互质;

⑶两个质数一定互质;⑷2和所有奇数互质;

⑸质数与比它小的合数互质;

三、经验之谈:

书写分解质因数的结果时不能把质因数相乘写在等号左边,把合数写在右边,比如36=2×2×3×3就不能写成2×2×3×3=36;

短除法是除法一种简化,利用短除法分解质因数时,除数和商都不能是1,因为1不是质数

图形的变换

1、轴对称图形:把一个图形沿着某一条直线对折,两边能够完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴。

2、成轴对称图形的特征和性质:①对称点到对称轴的距离相等;②对称点的连线与对称轴垂直;③对称轴两边的图形大小形状完全相同。

3、物体旋转时应抓住三点:①旋转中心;②旋转方向;③旋转角度。旋转只改变物体的位置,不改变物体的形状、大小。

小学生五年级数学复习知识点整理篇6

1、小数除法的意义:已知两个因数的积与其中的一个因数,求另一个因数的运算。

如:0.60.3表示已知两个因数的积0.6与其中的一个因数0.3,求另一个因数的运算。

2、小数除以整数的计算方法:小数除以整数,按整数除法的方法去除。,商的小数点要和被除数的小数点对齐。整数部分不够除,商0,点上小数点。如果有余数,要添0再除。

3、除数是小数的除法的计算方法:先将除数和被除数扩大相同的倍数,使除数变成整数,再按“除数是整数的小数除法”的法则进行计算。

注意:如果被除数的位数不够,在被除数的末尾用0补足。

4、在实际应用中,小数除法所得的商也可以根据需要用“四舍五入”法保留一定的小数位数,求出商的近似数。

5、除法中的变化规律:

①商不变性质:被除数和除数同时扩大或缩小相同的倍数(0除外),商不变。

②除数不变,被除数扩大,商随着扩大。

③被除数不变,除数缩小,商扩大。

6、循环小数:一个数的小数部分,从某一位起,一个数字或者几个数字依次不断重复出现,这样的小数叫做循环小数。

循环节:一个循环小数的小数部分,依次不断重复出现的数字。如6.3232……的循环节是32

7、小数部分的位数是有限的小数,叫做有限小数。小数部分的位数是无限的小数,叫做无限小数。

小学生五年级数学复习知识点整理篇7

1、小数乘整数:意义求几个相同加数的和的简便运算。

如:1.53表示1.5的3倍是多少或3个1.5的和的简便运算。

计算方法:先把小数扩大成整数;按整数乘法的法则算出积;再看因数中一共有几位小数,就从积的右边起数出几位点上小数点。

2、小数乘小数:意义就是求这个数的几分之几是多少。

如:1.50.8就是求1.5的十分之八是多少。注意:计算结果中,小数部分末尾的0要去掉,把小数化简;小数部分位数不够时,要用0占位

计算方法:先把小数扩大成整数;按整数乘法的法则算出积;再看因数中一共有几位小数,就从积的右边起数出几位点上小数点。

3、规律:

一个数(0除外)乘大于1的数,积比原来的数大;

一个数(0除外)乘小于1的数,积比原来的数小。

4、求近似数的方法一般有三种:

⑴四舍五入法;⑵进一法;⑶去尾法

5、计算钱数,保留两位小数,表示计算到分。保留一位小数,表示计算到角。

6、小数四则运算顺序跟整数是一样的。

7、运算定律和性质:

加法:

加法交换律:a+b=b+a

加法结合律:(a+b)+c=a+(b+c)

减法:

减法性质:a-b-c=a-(b+c)

a-(b-c)=a-b+c

乘法:

乘法交换律:ab=ba

乘法结合律:(ab)c=a(bc)

乘法分配律:(a+b)c=ac+bc

(a-b)c=ac-bc

除法:

除法性质:abc=a(bc)

小学生五年级数学复习知识点整理篇8

简易方程:方程axb=c(a,b,c是常数)叫做简易方程。

方程:含有未知数的等式叫做方程。(注意方程是等式,又含有未知数,两者缺一不可)

方程和算术式不同。算术式是一个式子,它由运算符号和已知数组成,它表示未知数。方程是一个等式,在方程里的未知数可以参加运算,并且只有当未知数为特定的数值时,方程才成立。

方程的解

使方程左右两边相等的未知数的值,叫做方程的解。

如果两个方程的解相同,那么这两个方程叫做同解方程。

13.方程的同解原理:

(1)方程的两边都加或减同一个数或同一个等式所得的方程与原方程是同解方程。

(2)方程的两边同乘或同除同一个不为0的数所得的方程与原方程是同解方程。

解方程:解方程,求方程的解的过程叫做解方程。

列方程解应用题的意义:

用方程式去解答应用题求得应用题的未知量的方法。

列方程解答应用题的步骤

(1)弄清题意,确定未知数并用x表示;

(2)找出题中的数量之间的相等关系;

(3)列方程,解方程;

(4)检查或验算,写出答案。

列方程解应用题的方法

综合法

先把应用题中已知数(量)和所设未知数(量)列成有关的代数式,再找出它们之间的等量关系,进而列出方程。这是从部分到整体的一种思维过程,其思考方向是从已知到未知。

分析法

先找出等量关系,再根据具体建立等量关系的需要,把应用题中已知数(量)和所设的未知数(量)列成有关的代数式进而列出方程。这是从整体到部分的一种思维过程,其思考方向是从未知到已知。

列方程解应用题的范围:小学范围内常用方程解的应用题:

(1)一般应用题;

(2)和倍、差倍问题;

(3)几何形体的周长、面积、体积计算;

(4)分数、百分数应用题;

(5)比和比例应用题。

AD位1

相关推荐

AD位2

热门图文

AD3

上一篇:五年级数学上册知识点重点归纳

下一篇:2023五年级上学期数学科目知识点总结